

#### Bioinformatics Intro and Web-Tools

sol genomics network

presented by Suzy Strickler Rm 217

Slides can be found here: ftp://ftp.solgenomics.net/ bioinfo\_class/interns/2017/



## What is bioinformatics?



- Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biological data. As an interdisciplinary field of science, bioinformatics combines computer science, statistics, mathematics, and engineering to analyze and interpret biological data.
- Bioinformatics organizes and analyzes basic biological data, whereas computational biology builds theoretical models of biological systems, just as mathematical biology does with mathematical models.





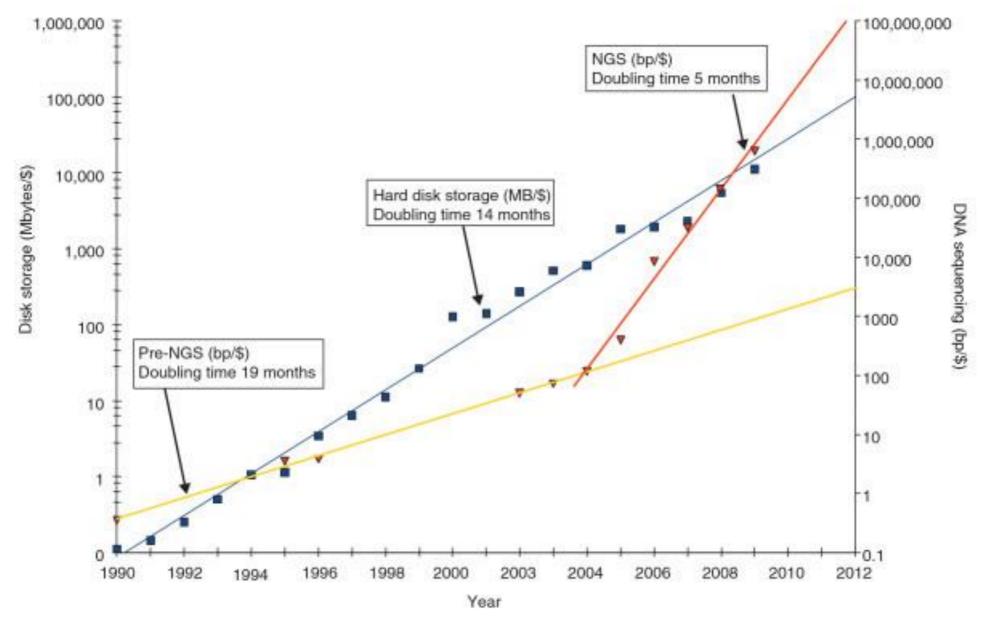
#### Bioinformatics can...

- Identify similar sequences
- Provide a putative function for a sequence
- Assemble sequences (genomes, transcriptomes)
- Annotate genomes
- Identify differentially expressed genes
- Build networks of genes or metabolites
- Determine phylogenetic relationships
- Mine literature for biological information
- Uncover differences between two genomes
- Calculate how a protein folds





#### What can bioinformatics do for me?


- Majority of projects involve large datasets
- Speed up your research
- Enable you to ask new questions
- Basic knowledge of bioinformatics needed
  - Extract information
  - Transform information
  - Run analyses
  - Build hypotheses, etc.

#### Why do we need bioinformatics?





#### Increase in Sequencing Data



L. Stein, Genome Biology, 2010

Slide credit: Lukas Mueller







#### A keyboard for bioinformaticians to reflect how easy (some) biologists think our job is! #PushButtonBioinformatics









#### Linux

- UNIX-based, free and open source operating system
- Very stable, easy to use
- Created by Linus Torvalds in 1990s as a student
- Adopted for most bioinformatics work
  - Also: installed on cell phones, laptops, desktops, clusters, supercomputers
- Can run on your computer!
  - Virtualized or native



Slide credit: Lukas Mueller



http://www.linux-netbook.com/linux/distributions/





#### Scripting

- Scripts: Small programs written by the enduser that control the execution of other programs or perform a simple algorithm
- Extremely flexible
- Written in Shell, Perl, Python Also R
- You can write them yourself!!!

# Web-based bioinformatics

- Many databases and tool are accessible through a graphical user interface (GUI).
- We will focus on these today.



#### Databases



Source: Contributing Organizations at GMOD



#### **Biological Databases:**

I - Types.

2-Public Repositories.

# 3-Community specific databases.3.1- For species.3.2- For specific datatypes.

4- Genomic Browsers.

I.Types.



There is 3 types of biological databases (Rhee SY. et al. 2006):

• Public repositories with massive data storage.

• Community-specific databases.

• Project-specific databases.

I.Types.



- \* Public repositories.
  - Maintained by public agencies or public international consortiums.
  - Massive data amounts (quantity).
  - No curated or poorly curated data.
  - Long term data storage.

#### 2. Public Repositories.



### NCBI (National Center for Biotechnology Information) <a href="http://www.ncbi.nlm.nih.gov/">http://www.ncbi.nlm.nih.gov/</a>

| SNCBI<br>National Center for<br>Biotechnology Information | Database∉   €)                                                                                       | Search                                                                                                   |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| NCBI Home                                                 | Welcome to NCBI                                                                                      | Popular Resources                                                                                        |
| Resource List (A-Z)                                       | The National Center for Biotechnology Information advances science and health by providing access to | PubMed                                                                                                   |
| All Resources                                             | biomedical and genomic information.                                                                  | Bookshelf                                                                                                |
| Chemicals & Bioassays                                     | About the NCBI   Mission   Organization   Research   NCBI News                                       | PubMed Central                                                                                           |
| Data & Software                                           |                                                                                                      | PubMed Health                                                                                            |
| DNA & RNA                                                 |                                                                                                      | BLAST                                                                                                    |
| Domains & Structures                                      | Get Started                                                                                          | Nucleotide                                                                                               |
| Genes & Expression                                        | Tools: Analyze data using NCBI software     Downloads: Get NCBI data or software                     | Genome                                                                                                   |
| Genetics & Medicine                                       | How-To's: Learn how to accomplish specific tasks at NCBI                                             | SNP                                                                                                      |
| Genomes & Maps                                            | <ul> <li><u>Submissions</u>: Submit data to GenBank or other NCBI databases</li> </ul>               | Gene                                                                                                     |
| Homology                                                  |                                                                                                      | Protein                                                                                                  |
| Literature                                                |                                                                                                      | PubChem                                                                                                  |
| Proteins                                                  | NCBI Twitter feed                                                                                    |                                                                                                          |
| Sequence Analysis                                         | Keep up-to-date on data updates, resource                                                            | NCBI Announcements                                                                                       |
| Taxonomy                                                  | announcements, and other information about                                                           | New RefSeq Bacterial Protein Produ                                                                       |
| Training & Tutorials                                      | what is going on at the NCBI. GO                                                                     | and Emerging RefSeq Data Model<br>Jun 11,                                                                |
| Variation                                                 | ш 1 2 3 4 5 6 7 8                                                                                    | The NCBI Reference Sequence Pro<br>(RefEas) project is powered using a<br>Welcome to the NCBI News site! |



### NCBI (National Center for Biotechnology Information) <a href="http://www.ncbi.nlm.nih.gov/">http://www.ncbi.nlm.nih.gov/</a>

Highlights:

- GenBank.
- PubMed.
- Gene Expression Omnibus (GEO)
- Taxonomy



## GenBank, NIH database for sequences, an annotated collection of ALL publicly available DNA sequences (Benson DA. *et al.* 2011).

#### http://www.ncbi.nlm.nih.gov/genbank/

http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotide

| S NCBI Resources 🖂 How | To 🔍               |                             | My NCBI Sign In |
|------------------------|--------------------|-----------------------------|-----------------|
| Nucleotide             | Search: Nucleotide | Limits Advanced search Help |                 |
| Alphabet of Life       |                    | Search Clear                |                 |



#### Nucleotide

The Nucleotide database is a collection of sequences from several sources, including GenBank, RefSeq, TPA and PDB. Genome, gene and transcript sequence data provide the foundation for biomedical research and discovery.

| Using Nucleotide  | Nucleotide Tools  | Other Resources |
|-------------------|-------------------|-----------------|
| Quick Start Guide | Submit to GenBank | GenBank Home    |
| FAQ               | LinkOut           | RefSeq Home     |
| Help              | E-Utilities       | Gene Home       |
| GenBank FTP       | BLAST             | SRA Home        |
| RefSeg FTP        | Batch Entrez      | INSDC           |



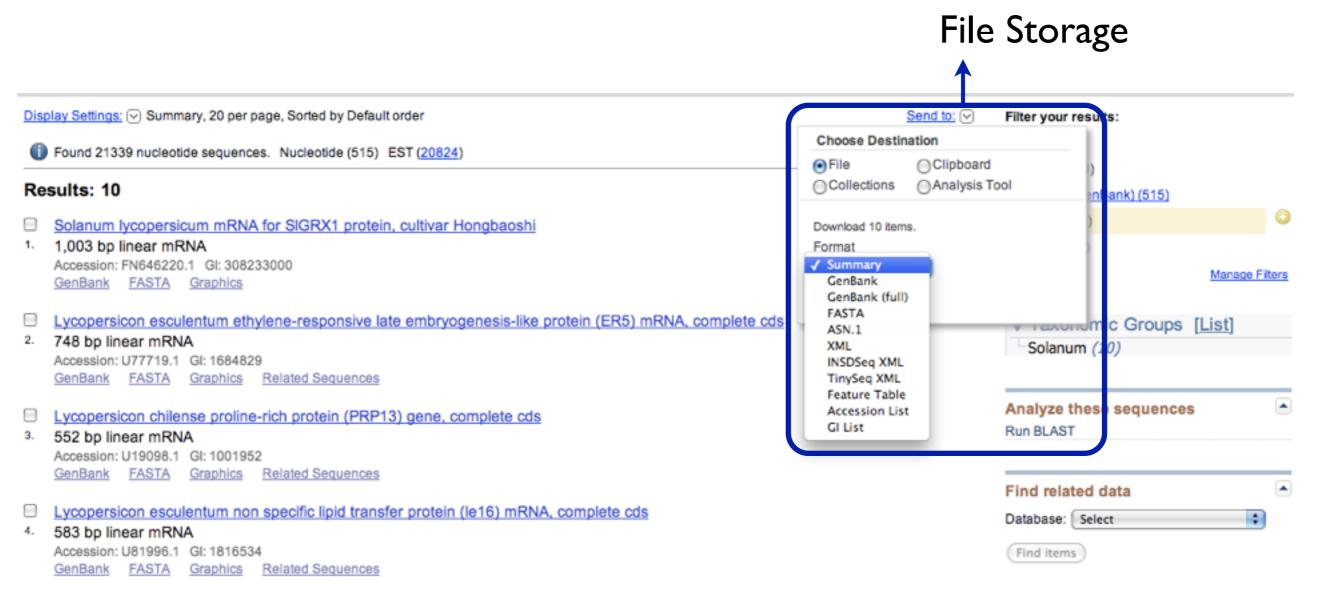
| GenBa                                                                                                                                                                                                                                                                                                                              | nk:<br>1                                                                                                                                                                                                         | > Search Sec                                    | tion                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S NCBI Resources V How                                                                                                                                                                                                                                                                                                             | To 🖂                                                                                                                                                                                                             |                                                 | My NCBI Sign In                                                                                                                                                                                                                                                                                    |
| Nucleotide<br>Alphabet of Life                                                                                                                                                                                                                                                                                                     | Search: Nucleotide Save sea                                                                                                                                                                                      | rch Limits Advanced search Help<br>Search Clear |                                                                                                                                                                                                                                                                                                    |
| Display Settings: 🕑 Summary, 20                                                                                                                                                                                                                                                                                                    | ) per page, Sorted by Default order                                                                                                                                                                              | Send to:                                        | Filter your results:                                                                                                                                                                                                                                                                               |
| Found 770004 nucleotide set                                                                                                                                                                                                                                                                                                        | equences. Nucleotide (15269) EST (754652) GSS (83)                                                                                                                                                               |                                                 | All (15269)<br>Bacteria (198)                                                                                                                                                                                                                                                                      |
| <ol> <li>30,427,671 bp linear DN<br/>Accession: CP002684.1 GI<br/>GenBank FASTA Grap</li> <li>Gossypium hirsutum mit</li> <li>1,622 bp linear DNA<br/>Accession: HM150999.1 GI<br/>GenBank FASTA Grap</li> <li>Gossypium hirsutum mit</li> <li>6,195 bp linear DNA<br/>Accession: FJ966896.1 GI:<br/>GenBank FASTA Grap</li> </ol> | omosome 1, complete sequence<br>A<br>: 332189094<br>hics<br>ogen-activated protein kinase (MAPK) gene, promote<br>: 315258198<br>hics<br>ogen-activated protein kinase 16 (MPK16) gene, com<br>297748124<br>hics | nplete cds                                      | <ul> <li>INSDC (GenBank) (14860)<br/>mRNA (9150)<br/>BefSeq (401)</li> <li>TefSeq (401)</li> <li>Tence Fitters</li> </ul> Populus tremula x Populus alba (7835) Oryza sativa (2155) Oryza sativa Indica Group (1366) Pinus taeda (577) Oryza sativa Japonica Group (524) Al other taxa (4292) More |
|                                                                                                                                                                                                                                                                                                                                    | sections                                                                                                                                                                                                         | Sequence Type Filter                            | Taxonomic Filter                                                                                                                                                                                                                                                                                   |



| GenBank:                                                                       | Filter applica                                                                       | tion box                              |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------|
| Alphabet of Life ((Drought) AND "seed plants"(porgn:txid5)                     | Save search Limits Advanced search Help<br>(\$8024)) AND "Solanales"(po Search Clear |                                       |
| Display Settings; Summary, 20 per page, Sorted by Default order                | Send to: 🖂                                                                           | Filter your results:                  |
| Found 22653 nucleotide sequences. Nucleotide (559) EST (22094)                 |                                                                                      | <u>All (559)</u>                      |
| Results: 1 to 20 of 49                                                         | << First < Prev Page 1 of 3 Next > Last >>                                           | Bacteria (0)<br>INSDC (GenBank) (559) |
| Capsicum annuum chitinase class II (CAChi2) mRNA, complete                     | cds                                                                                  | mRNA (49)                             |
| <ol> <li>1,004 bp linear mRNA<br/>Accession: AF091235.1 GI: 3641354</li> </ol> |                                                                                      | RefSeq (0)                            |
| GenBank FASTA Graphics Related Sequences                                       |                                                                                      | Manage Filters                        |
| Capsicum annuum stellacyanin-like protein CASLP1 precursor.                    | mRNA, complete cds                                                                   | ▼ Taxonomic Groups [List]             |
| <ol> <li>937 bp linear mRNA<br/>Accession: AF291179.1 GI: 9885805</li> </ol>   |                                                                                      | Solanaceae (49)                       |
| GenBank FASTA Graphics                                                         |                                                                                      | -Nicotiana (27)<br>Capsicum (12)      |
| Nicotiana attenuata lipid transfer protein 1-like (LTP1) mRNA, p               | artial sequence                                                                      | Solanum (10)                          |
| <ol> <li>672 bp linear mRNA<br/>Accession: HM068895.1 GI: 298155395</li> </ol> |                                                                                      |                                       |
| GenBank FASTA Graphics Related Sequences                                       |                                                                                      | Find related data                     |
| Nicotiana attenuata osmotin 1-like (OSM1) mRNA, complete se                    | quence                                                                               | Database: Select                      |
| 4. 958 bp linear mRNA                                                          |                                                                                      | (Find items)                          |



| Ge                                                   | nBank:                                                                                                                                                                                                                                                                                                                                | Tools Links                                              |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Nucleot<br>Alphabet of L                             |                                                                                                                                                                                                                                                                                                                                       |                                                          |
| Display Setting                                      | s: 🗸 GenBank                                                                                                                                                                                                                                                                                                                          | Send: 🖂 Change region shown 💌                            |
| Nicotian<br>GenBank: HM0<br>FASTA Grap               |                                                                                                                                                                                                                                                                                                                                       | Ce Customize view                                        |
| Goto:<br>LOCUS<br>DEFINITION<br>ACCESSION<br>VERSION | HM068893 958 bp mRNA linear PLN 28-DEC-2010<br>Nicotiana attenuata osmotin 1-like (OSM1) mRNA, complete sequence.<br>HM068893<br>HM068893.1 GI:298155393                                                                                                                                                                              | Run BLAST<br>Pick Primers<br>Find in this Sequence       |
| KEYWORDS<br>SOURCE<br>ORGANISM                       | Nicotiana attenuata<br><u>Nicotiana attenuata</u><br>Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;<br>Spermatophyta; Magnoliophyta; eudicotyledons; core eudicotyledons;<br>asterids; lamiids; Solanales; Solanaceae; Nicotianoideae;<br>Nicotianeae; Nicotiana.                                                 | LinkOut to external resources Gramene [Gramene]          |
| REFERENCE<br>AUTHORS<br>TITLE<br>JOURNAL             | <pre>Nicotianeae; Nicotiana. 1 (bases 1 to 958) Re,D.A., Dezar,C.A., Chan,R.L., Baldwin,I.T. and Bonaventure,G. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions J. Exp. Bot. 62 (1), 155-166 (2011)</pre> | All links from this record<br>Full text in PMC<br>PubMed |
| PUBMED<br>REFERENCE<br>AUTHORS<br>TITLE<br>JOURNAL   | 20713465<br>2 (bases 1 to 958)<br>Bonaventure,G., Re,D. and Baldwin,I.<br>Analysis of drought and ABA responsive genes in Nicotiana attenuata<br>Unpublished                                                                                                                                                                          | Recent activity                                          |


sol genomics network

#### GenBank:

|                                                    | Format<br>1                                                                                                                                                                                                                                                                                                                           | File Storage                                             |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Nucleo                                             | ite                                                                                                                                                                                                                                                                                                                                   |                                                          |
|                                                    | Search Clear                                                                                                                                                                                                                                                                                                                          |                                                          |
| Display Setting                                    | s: ✓ GenBank                                                                                                                                                                                                                                                                                                                          | Send: 🕑 Change region shown                              |
| GenBank: HM                                        |                                                                                                                                                                                                                                                                                                                                       | Customize view                                           |
| Go to: 🖂                                           | HM068893 958 bp mRNA linear PLN 28-DEC-2010                                                                                                                                                                                                                                                                                           | Analyze this sequence Run BLAST Pick Primers             |
| DEFINITION<br>ACCESSION<br>VERSION                 | Nicotiana attenuata osmotin 1-like (OSM1) mRNA, complete sequence.<br>HM068893<br>HM068893.1 GI:298155393                                                                                                                                                                                                                             | Find in this Sequence                                    |
| KEYWORDS<br>SOURCE<br>ORGANISM                     | Nicotiana attenuata<br><u>Nicotiana attenuata</u><br>Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;<br>Spermatophyta; Magnoliophyta; eudicotyledons; core eudicotyledons;<br>asterids; lamiids; Solanales; Solanaceae; Nicotianoideae;<br>Nicotianeae; Nicotiana.                                                 | LinkOut to external resources Gramene [Gramene]          |
| REFERENCE<br>AUTHORS<br>TITLE<br>JOURNAL           | <pre>Nicotianeae; Nicotiana. 1 (bases 1 to 958) Re,D.A., Dezar,C.A., Chan,R.L., Baldwin,I.T. and Bonaventure,G. Nicotiana attenuata NaHD20 plays a role in leaf ABA accumulation during water stress, benzylacetone emission from flowers, and the timing of bolting and flower transitions J. Exp. Bot. 62 (1), 155-166 (2011)</pre> | All links from this record<br>Full text in PMC<br>PubMed |
| PUBMED<br>REFERENCE<br>AUTHORS<br>TITLE<br>JOURNAL | 20713465<br>2 (bases 1 to 958)<br>Bonaventure,G., Re,D. and Baldwin,I.<br>Analysis of drought and ABA responsive genes in Nicotiana attenuata<br>Unpublished                                                                                                                                                                          | Recent activity                                          |



#### GenBank:





#### **PubMed**, NIH database for scientific literature and publications. <u>http://www.ncbi.nlm.nih.gov/pubmed/</u>

| Publed.gov<br>U.S. National Library of Medicine<br>National Institutes of Health | Search: PubMed                     | RSS Save search Limits Advanced search Help<br>Search Clear |            |
|----------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------|------------|
| Display Settings: 🖂 Summary, 20                                                  | per page, Sorted by Recently Added |                                                             | Send to: 🖂 |

#### Results: 1 to 20 of 117

<< First < Prev Page 1 of 6 Next > Last >>

An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress

 tolerance in the tomato wild-related species Solanum pennellii. Atarés A, Moyano E, Morales B, Schleicher P, García-Abellán JO, Antón T, García-Sogo B, Perez-Martin F, Lozano R, Flores FB, Moreno V, Del Carmen Bolarin M, Pineda B. Plant Cell Rep. 2011 Jun 7. [Epub ahead of print] PMID: 21647638 [PubMed - as supplied by publisher] Related citations

- Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum.
- Han Q, Zhang J, Li H, Luo Z, Ziaf K, Ouyang B, Wang T, Ye Z. Mol Biol Rep. 2011 Jun 3. [Epub ahead of print] PMID: 21637957 [PubMed - as supplied by publisher] <u>Related citations</u>
- Atypical epigenetic mark in an atypical location: cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive
- 3. tomato gene.

Gonzalez RM, Ricardi MM, Iusem ND. BMC Plant Biol. 2011 May 20;11(1):94. [Epub ahead of print] PMID: 21599976 [PubMed - as supplied by publisher] Free Article Related citations



#### PubMed:

- Relatively updated (Gap between publication and loading in PubMed database around 1-2 days).
- It doesn't have all plant science related journals (for example: Theoretical Applied and Genetics or Crop Science).

(More information: <u>http://wwwcf.nlm.nih.gov/serials/journals/index.cfm</u>)

• There are no links between articles and genes, sequences, expression or other information contained in the publication.



## Sequence Read Archive (SRA), Database to store sequences produced by NGS such as Illumina, 454, Solid, Helicos... <u>http://www.ncbi.nlm.nih.gov/sra</u>

| S NCBI Resources 🖸 How To 🕑 |                                                                                                                                                               | Sign in to NCBI |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| SRA \$                      |                                                                                                                                                               | Search<br>Help  |
| G ATATTT AATAC ATA          | SRA                                                                                                                                                           |                 |
| AACGCC ATATTAC ATG          | The Sequence Read Archive (SRA) stores raw sequencing data from the<br>System®, Illumina Genome Analyzer®, Applied Biosystems SOLiD® Sy<br>Biosciences SMRT®. |                 |
| Using SRA                   | Tools                                                                                                                                                         | Other Resources |
| Handbook                    | BLAST                                                                                                                                                         | SRA Home        |
| Download                    | SRA Run browser                                                                                                                                               | Trace Archive   |
| E-Utilities                 | Submit to SRA                                                                                                                                                 | Trace Assembly  |
|                             | SRA software                                                                                                                                                  | GenBank Home    |



#### EBI (European Bioinformatics Institute) http://www.ebi.ac.uk/

| EMBL      | BL-EBI European Bioinformatics Institute |               |              |          |          |      |          |                |
|-----------|------------------------------------------|---------------|--------------|----------|----------|------|----------|----------------|
| Databases | Tools                                    | Research      | Training     | Industry | About Us | Help | 1        | Site Index 🔊 🎒 |
|           | Explore t                                | the EBI:      |              |          |          |      |          |                |
|           |                                          |               |              |          |          |      | FIND     |                |
|           | Examples:                                | ROA1_HUMAN, t | pi1, Sulston |          |          | Help | Feedback |                |

#### **Data Resoures and Tools**

| ENA          |   | Genomes              | Gene Expression  | Literature | Sec  |
|--------------|---|----------------------|------------------|------------|------|
| UniProt      |   | Nucleotide Sequences | Molecular        | Taxonomy   | Ana  |
| ArrayExpress |   | Protein Sequences    | Interactions     | Ontologies | Pat  |
| Ensembl      | 1 | Macromolecular       | Reactions&       | Patent     | Stru |
| InterPro     |   | Structures           | Pathways         | Resources  | Тех  |
| PDBe         |   | Small Molecules      | Protein Families |            | Dov  |
|              |   |                      | Enzymes          |            | We   |
|              |   |                      |                  |            |      |

- Sequence Similarity &
- Analysis
- Pattern & Motif Searches
- Structure Analysis
  - Text Mining
  - Downloads
- Web Services



#### EBI (European Bioinformatics Institute) http://www.ebi.ac.uk/

Highlights:

- ENA (European Nucleotide Archive).
- UniProt
- ArrayExpress
- Ensembl
- InterPro



InterPro, protein domain database organized by superfamilies, families and subfamilies. It is frequently used for genome functional annotation, specially to link genes with gene ontologies associated with protein domains. (http://

www.ebi.ac.uk/interpro/).

BI > Databases > InterPro

#### InterPro protein sequence analysis & classification

InterPro is an integrated database of predictive protein "signatures" used for the classification and automatic annotation of proteins and genomes. InterPro classifies sequences at superfamily, family and subfamily levels, predicting the occurrence of functional domains, repeats and important sites. InterPro adds in-depth annotation, including GO terms, to the protein signatures.

Current release: 32.0 18th April 2011 (see Release Notes for further details)

| Search @ InterPro: |
|--------------------|
|--------------------|

Do a sequence search of InterPro, via InterProScan

Extract large datasets by querying our BioMart #

You can access our data programmatically, via Web Services

Use the updated InterProScan Web Service

If you have any questions or feedback please contact us.



I.Types.



- \* Community-specific databases.
  - Maintained by scientific groups, frequently associated with an specific project or a research line.
  - Considerable data amount related with the community needs.
  - Curated or highly curated data (quality).
  - Long term data storage

#### 3. Community specific databases



| Name                                           | Species                                                                                                                                             | Data                                                                                                                                                            | Link                                       |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|
| The Arabidopsis Information<br>Resource (TAIR) | Arabidopsis                                                                                                                                         | Single Species Genomes, Genetic Markers,<br>SNPs, Genes, Expression, Proteins,<br>Ontologies, Metabolic Pathways,<br>Publications                               | <u>http://</u><br>www.arabidopsis.org/     |  |
| Gramene                                        | Monocots<br>(Grape and<br>Arabidopsis)*Multiple Species Genomes, Genetic<br>Markers, SNPs, Genes, Proteins,<br>Ontologies, Metabolic Pathways, QTLs |                                                                                                                                                                 | <u>http://</u><br><u>www.gramene.org</u> / |  |
| Sol Genomics Network<br>(SGN)                  | Solanaceae,<br>Rubiaceae                                                                                                                            | Multiple Species Genomes, Genetic<br>Markers, SNPs, Genes, Expression*,<br>Proteins, Ontologies, Metabolic Pathways,<br>Publications, QTLs and Maps, Phenotypes | http://solgenomics.net/                    |  |
| Genome Database for<br>Rosaceae (GDR)          | Rosaceae                                                                                                                                            | Multiple Species Genomes, Genetic<br>Markers, SNPs, Genes, Proteins,<br>Ontologies, Phenotypes, Unigenes                                                        | <u>http://</u><br>www.rosaceae.org/        |  |
| Phytozome                                      | Plants                                                                                                                                              | Multiple Species Genomes                                                                                                                                        | <u>http://</u><br>www.phytozome.net        |  |
| Plant Genome Database<br>(PlantGDB)            | Plants                                                                                                                                              | Multiple Species Genomes, Genes,<br>Unigenes                                                                                                                    | <u>http://www.plantgdb.org</u> /           |  |

3. Community specific databases



There are other community driven databases focused in a knowledge area:

Metabolic databases: MetaCyc: http://metacyc.org/ KEGG: http://www.genome.jp/kegg/

Ontology databases: Gene Ontology: http://www.geneontology.org/ Plant Ontology: http://www.plantontology.org/

Transcription Factors database: TranscriptionFactorDB (DBD): <u>www.transcriptionfactor.org</u> I.Types.



- \* Project specific databases.
  - Maintained by a group or a small consortium
  - Low data amount.
  - Variability for data curation (from poorly to highly).
  - Limited lifespan generally associated with a project.
  - Examples: Plant Genome Network (PGN)



A Genome Browser is a graphical interface that shows aligned genomic data.

Each data type is in a track.

The tracks are hierarchically organized by track size. For example, the first track could be a *chromosome*, the second one a *region* and the third one, a *detailed region* with gene structures. 4. Genomic Browsers



Genome Browser most used:

- JBrowse (GMOD).
- GBrowse (GMOD).
- UCSC Genome Browser.
- Emsembl Genome Browser.
- -Vista Genome Browser.

#### JBrowse



#### http://solgenomics.net/

|                |       |                                       | tools           |                        | sol search  |
|----------------|-------|---------------------------------------|-----------------|------------------------|-------------|
|                |       |                                       | Sequence A      | nalysis                | n   new use |
|                |       |                                       | BLAST           |                        |             |
|                |       |                                       | VIGS Tool       | d                      | <u> </u>    |
|                |       |                                       | Alignment A     | nalyzer                |             |
| Maps & Markers |       | 17                                    | Tree Browse     | r                      | pes         |
| maps & markers | 1     |                                       | Intron Finde    | r                      | Pes         |
| CT2            | »     |                                       | Mapping         |                        |             |
|                |       | • • • • • • • • • • • • • • • • • • • | Genome Bro      | wser (Jbrowse)         |             |
| 00             | 15    |                                       | Comparative     | Map Viewer             |             |
| C2_At4g157     | »—    |                                       | CAPS Design     | er                     |             |
|                |       |                                       | solQTL: QTL     | Mapping                |             |
|                |       |                                       | Molecular B     | iology                 |             |
|                |       |                                       | In Silico PCR   |                        |             |
|                |       |                                       | Tomato Expr     | ression Database (TED) |             |
|                | 00    |                                       | Systems Bio     | logy                   |             |
| -              |       |                                       | SolCyc Bioch    | emical Pathways        |             |
|                |       |                                       | Coffee Intera   | actomic Data           |             |
|                |       |                                       | 💾 Breeder Too   | ls                     |             |
| ×              |       |                                       | 🛯 🍟 Breeder Hom | ne                     |             |
| Breeders Too   | olbox | я                                     | Bulk Query      |                        | s           |
|                |       | _ <b>.</b> ¥ u .                      |                 | BAC information        |             |
|                | Gen   | omes & Sequer                         | FTP Site        |                        |             |



#### JBrowse



| Available Tracks                                                                                                                                                                                                                                                                   |   | Tomato SL2.50 IT                                             | TAG2.4              | - File        | View                           | Help          |                   |                         |                  |                               |                               |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------|---------------------|---------------|--------------------------------|---------------|-------------------|-------------------------|------------------|-------------------------------|-------------------------------|----------|
| X filter by text                                                                                                                                                                                                                                                                   | ( | 5,000,000                                                    | 10,000,00           | 00 15         | ,000,000                       | 20,000,000    | 25,000,000        | 30,000,000              | 35,000,000       | 40,000,000                    | 45,000,000                    | 50,0     |
| Gene models                                                                                                                                                                                                                                                                        | 1 |                                                              | $\leftarrow$        | $\rightarrow$ | $\Theta$                       | QQ            | SL2.50            | ch11 - SL2.             | 50ch11:32770591  | 32780130 (9                   | 54 Kb) Go                     | 2        |
| ITAG2.4 gene models                                                                                                                                                                                                                                                                |   |                                                              | 32,772              | 2,500         |                                |               | 32,775,00         | 00                      |                  | 32,777,50                     | 0                             |          |
| - Genetic loci                                                                                                                                                                                                                                                                     | 3 | Reference sequent                                            | ce                  |               | Zoom in                        | to see sequen | ce                | Zoom i                  | n to see sequenc | e                             | Zoom in                       | to see s |
| <ul> <li>SGN locus sequences</li> <li>SGN markers</li> <li>SolCAP_SNPs</li> <li>Genome data and reagents</li> <li>ESTs and cDNAs - Other Solanaceae</li> <li>ESTs and cDNAs - Tomato</li> <li>MicroTom full-length cDNAs</li> <li>SGN unigenes</li> <li>SL2.50_assembly</li> </ul> |   | TAG2.4 gene mod<br>like protein (Fragment) (Al<br>19044390.1 | HRD V1 ** Q<br>Unkr | 8S4L1_SO      | LNI); contains<br>in (AHRD V1) | Inte          | o domain(s) IPROC | →<br>↓<br>04158 Protein |                  | Receptor-like k<br>Solyc11g04 | inase (AHRD V1 ****<br>4370.1 | - A7VM20 |
| <ul> <li>Prediction features (de novo)</li> </ul>                                                                                                                                                                                                                                  | 6 |                                                              |                     |               |                                |               |                   |                         |                  |                               |                               |          |
| AUGUSTUS (de novo, Tomato trained)<br>GlimmerHMM (de novo, Arabidopsis trained)<br>GlimmerHMM (de novo, tomato trained)<br>Infernal<br>geneID (de novo, Tomato trained)<br>tRNAscanSE                                                                                              | 4 |                                                              |                     |               |                                |               |                   |                         |                  |                               |                               |          |
| ✓ RNAseq Density 2                                                                                                                                                                                                                                                                 |   |                                                              |                     |               |                                |               |                   |                         |                  |                               |                               |          |



#### JBrowse



#### gene Solyc06g069410.2

| Pri | imary | Data |
|-----|-------|------|
|     |       |      |

|   | Name                                                                                                               | Solyc06g069410.2      |  |  |  |  |  |  |
|---|--------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|--|
|   | Туре                                                                                                               | gene                  |  |  |  |  |  |  |
|   | Position                                                                                                           | SL2.50ch06:43166656.  |  |  |  |  |  |  |
|   | Length                                                                                                             | 3,295 bp              |  |  |  |  |  |  |
| A | Attributes                                                                                                         |                       |  |  |  |  |  |  |
|   | Alias                                                                                                              | Solyc06g069410<br>1   |  |  |  |  |  |  |
|   | From_bogas                                                                                                         |                       |  |  |  |  |  |  |
|   | ld                                                                                                                 | gene:Solyc06g069410.2 |  |  |  |  |  |  |
|   | Length                                                                                                             | 3295                  |  |  |  |  |  |  |
|   | Seq_id                                                                                                             | SL2.50ch06            |  |  |  |  |  |  |
|   | Source                                                                                                             | ITAG_eugene           |  |  |  |  |  |  |
|   | Region sequence                                                                                                    |                       |  |  |  |  |  |  |
|   | >SL2.50ch06 SL2.50ch06:431<br>class=gene length=3295<br>ATTAAGGAGGGGGGAACTTGGGGGCCTA<br>TTTTCTGATGGGAGGAACAGCAGGCA |                       |  |  |  |  |  |  |

AGTAAAGCTTTTGTTGCAGAATCAAG ATATGTGGGAATTGGTGATTGCTTTC GTGGAGGGGAAACCAGGCCAATGTTA TCATCTCCTTGTGATGTTTTAGACCI CTTAGCACACTGAACAGTTAACCTTC. TAGATTGATGAAGTCCAACTTATTGA TGTCTCCCCTGGTTTGTGAGACTAGT

) RepeatMasker (aggressive) ) RepeatMasker (normal)

| gei | ne So | ₩ <sup>R</sup><br>%2CSo C Reader |                                                                        |                 |                                                                        |
|-----|-------|----------------------------------|------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------|
|     | Sub   | ofeatures                        |                                                                        |                 | oo Share                                                               |
|     | P     | rimary Data                      |                                                                        | ,000 90,000,000 |                                                                        |
|     |       | Name                             |                                                                        |                 |                                                                        |
|     |       | Mitochondrial AE                 | DP/ATP carrier proteins (AHRD V1 **** Q2UU95_ASPOR); contains Interpro |                 | 93,770,000<br>sequence Zd                                              |
|     |       | domain(s) IPR00                  | 2113 Adenine nucleotide translocator 1                                 |                 |                                                                        |
|     |       | Туре                             | mRNA                                                                   |                 | 1M240_ARALY)                                                           |
|     |       | Description                      |                                                                        |                 | Solyc01g<br>Piptdyi-prolyl cis-trans isomerase (Ar<br>Solyc01g105710.2 |
|     |       | Mitochondrial AE                 | DP/ATP carrier proteins (AHRD V1 **** Q2UU95_ASPOR); contains Interpro |                 | Solyc01g105710.2                                                       |
|     |       | domain(s) IPR00                  | 2113 Adenine nucleotide translocator 1                                 |                 |                                                                        |
|     |       | Position                         | SL2.50ch06:4316665643169950 (+ strand)                                 |                 |                                                                        |
|     |       | Length                           | 3,295 bp                                                               |                 | ck                                                                     |
|     | A     | ttributes                        |                                                                        |                 | oom                                                                    |
|     |       | From_bogas                       | 1                                                                      |                 |                                                                        |
|     |       | ld                               |                                                                        | 🍋 🏧 🐂 🗤         |                                                                        |
|     |       | Interpro2go_te                   | rm GO:0016020 GO:0005743                                               |                 |                                                                        |
|     |       | Length                           | 3295                                                                   |                 |                                                                        |
|     |       | Nb_exon                          | 3                                                                      |                 |                                                                        |
|     |       | Ontology_term                    | GO:0005471                                                             |                 |                                                                        |
|     |       | Seq_id                           | SL2.50ch06                                                             |                 |                                                                        |
|     |       | Sifter_term                      | GO:0005471                                                             |                 |                                                                        |
|     |       | Source                           | ITAG_eugene                                                            |                 |                                                                        |
| ):~ | ۱۸/:  | ~                                |                                                                        |                 | -                                                                      |

×

#### load tracks: Fasta, GFF3, BAM, BigWig

Display a menu

**Sol Genomics Network** 

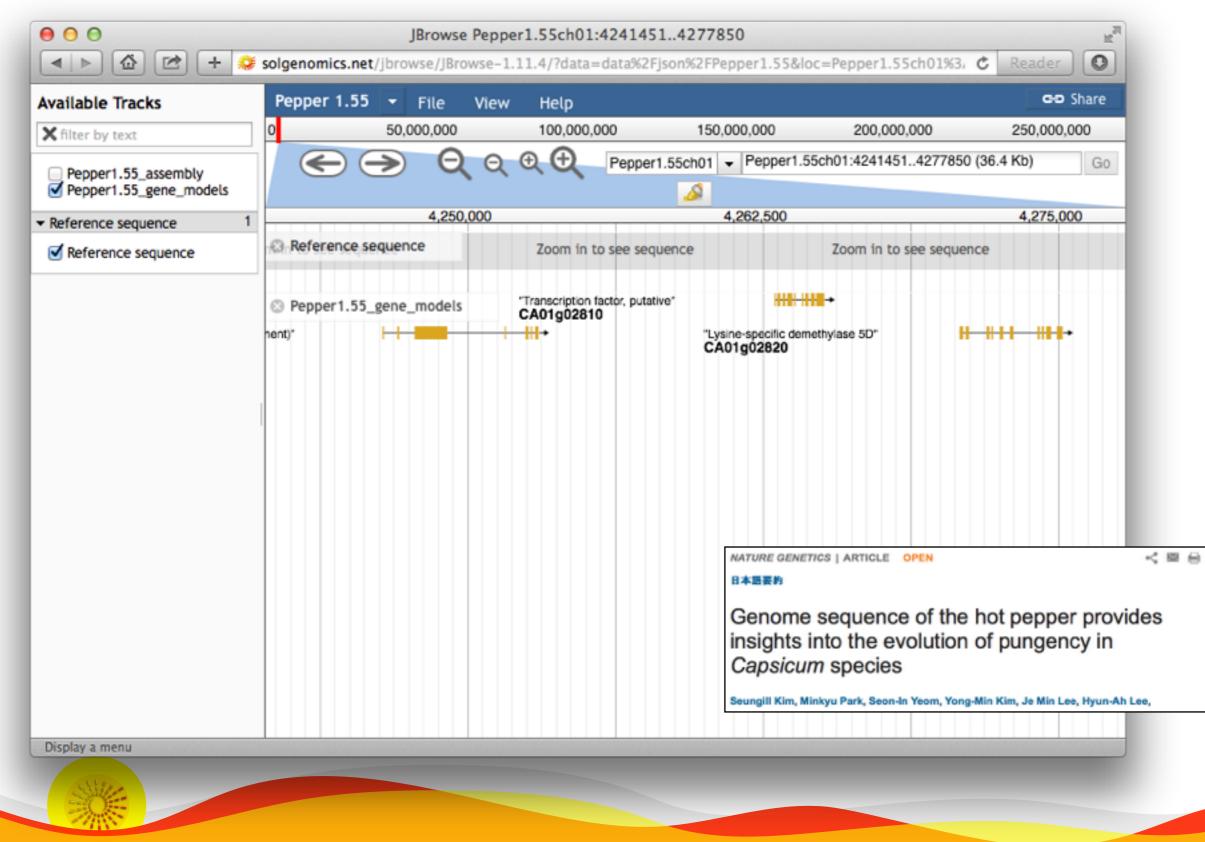
## JBrowse



| 20,000,000                                                                                                      | 40,000,000                                                        | 60,000,000                       | 80,000,000                               |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------|------------------------------------------|
| $ \bigcirc  \bigcirc                                $                                                           | Q Q (1) SL2.50ch01                                                | <ul> <li>Solyc06g0691</li> </ul> | Go 📣                                     |
| 35,000,000                                                                                                      | 35,5                                                              | 00, Solyc06g069100               | ),000                                    |
| ▼ Genetic loci                                                                                                  | 3 Reference sequence Q E E K R                                    | Solyc06g069100.1                 |                                          |
| SGN locus sequences SGN markers SolCAP_SNPs                                                                     | MENLGKKRK<br>NGGAGAACTIGGGCAAGAAGAGAAAG<br>ACCICTIGAACCCGTICTICTC |                                  | L T V V<br>TGACAGTAGTCA<br>LACTGTCATCAGT |
| Genome data and reagents                                                                                        | H L V Q A L L S L<br>P S S P C S S F P<br>S F K P L F L F         | I Solycoogoosi 10.2              |                                          |
| ESTs and cDNAs - Other Solanaceae                                                                               |                                                                   | Solyc06g069120                   |                                          |
| ESTS and cDNAs - Tomato<br>MicroTom full-length cDNAs<br>SGN unigenes                                           | TTAG2.4_gene_models                                               | Solyc06g069120.2                 |                                          |
| SL2.50_assembly                                                                                                 | Coverage of RNA-Seq reads on plus strand                          | Solyc06g069130                   |                                          |
| Prediction features (de novo)     AUGUSTUS (de novo, Tomato trained)                                            | 0                                                                 | Solyc06g069130.2                 |                                          |
| <ul> <li>GlimmerHMM (de novo, Arabidopsis trained)</li> <li>GlimmerHMM (de novo, tomato trained)</li> </ul>     | mean                                                              | Solyc06g069140                   | mear                                     |
| geneID (de novo, Tomato trained)<br>tRNAscanSE                                                                  |                                                                   | Solyc06g069140.1                 |                                          |
| - Quantitative                                                                                                  | 4                                                                 | Solyc06g069150                   |                                          |
|                                                                                                                 | 2                                                                 | Solyc06g069150.1                 |                                          |
| <ul> <li>Density of RNAseq reads on minus strand</li> <li>Density of RNAseq reads on plus strand</li> </ul>     | Navigation, zoor                                                  | Solyc06g069160                   | find feature by name                     |
| - Norseq All the                                                                                                |                                                                   | Solvc06d069160.1                 | ind reature by name                      |
| <ul> <li>Coverage of RNA-Seq reads on minus strand</li> <li>Coverage of RNA-Seq reads on plus strand</li> </ul> | selecting a regio                                                 | Solyc06g069170                   |                                          |
| ✓ Reference sequence                                                                                            | 1                                                                 | Solyc06g069170.2                 |                                          |
| Reference sequence                                                                                              |                                                                   | Solyc06g069180                   |                                          |
| Repetitive elements                                                                                             | 2                                                                 | Solyc06g069180.2                 |                                          |
| RepeatMasker (aggressive)<br>RepeatMasker (normal)                                                              |                                                                   | Solyc06g069190                   |                                          |
| Display a menu                                                                                                  |                                                                   | Solyc06g069190.2                 |                                          |

Sol Genomics Network

## JBrowse




| Tomato 360 variants SL2.50                   | - | File  | Viev  | v   | Help    |        |        |       |          |
|----------------------------------------------|---|-------|-------|-----|---------|--------|--------|-------|----------|
| Tomato SL2.40 ITAG 2.3                       |   | 0,000 |       | 6,0 | 00,000  |        | 8,00   | 0,000 |          |
| Tomato SL2.50 ITAG2.4                        |   |       |       | 6   |         | -      | 0      | -     | 0 (      |
| Tomato variants SL2.40                       |   |       |       |     |         | ≥      | व      | ୍ର    | <b>A</b> |
| Tomato 360 variants SL2.50                   |   | 12,00 | 0,000 |     |         |        |        | ,     | 12,250,  |
| Tomato 150 variants SL2.50                   |   |       |       |     |         |        |        |       |          |
| Solanum pennellii                            |   |       |       |     | Zoom in | to see | sequer | nce   |          |
| N.benthamiana v1.0.1<br>N.benthamiana v0.4.4 |   |       |       |     |         |        |        |       |          |
| Pepper 1.55                                  |   |       |       |     |         |        |        |       |          |
| N.tabacum TN90                               |   |       |       |     |         |        |        |       |          |
| S. tuberosum DM1-3 v4.03                     |   |       |       |     |         |        |        |       |          |
|                                              |   | ,     |       |     |         |        |        |       |          |
|                                              |   |       |       |     |         |        |        |       |          |
|                                              |   |       |       |     |         |        |        |       |          |
|                                              |   |       |       |     |         |        |        |       |          |
|                                              |   |       |       |     |         |        |        |       |          |
|                                              |   |       |       |     |         |        |        |       |          |
|                                              |   |       |       |     |         |        |        |       |          |
|                                              |   |       |       |     |         |        |        |       |          |
|                                              |   |       |       |     |         |        |        |       |          |
|                                              |   |       |       |     |         |        |        |       |          |
|                                              |   |       |       |     |         |        |        |       |          |
|                                              |   |       |       |     |         |        |        |       |          |



## JBrowse: Pepper genome





**Sol Genomics Network** 

## JBrowse



| Tomato<br>0       | SL2.50 ITAG2.4 T File View Help<br>Open files                                                                           | × | ,000,00 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|---|---------|
| 35,000<br>© Refer | Add any combination of data files and URLs, and JBrowse<br>will automatically suggest tracks to display their contents. |   | 10534   |
|                   | Local files Remote URLs - one per line                                                                                  |   |         |
| 😸 ITAG2           | Select Files http://paste.uris.here/example.bam                                                                         |   |         |
|                   | Select or drag files here.                                                                                              |   |         |
|                   | Files and URLs                                                                                                          |   |         |
|                   | Add files and URLs using the controls above.                                                                            |   |         |
|                   | New Tracks                                                                                                              |   |         |
|                   |                                                                                                                         |   |         |
|                   | None                                                                                                                    |   |         |
|                   | Open immediately                                                                                                        |   |         |
|                   | 🗙 Cancel 🗁 Open                                                                                                         |   |         |
|                   |                                                                                                                         | _ |         |



# Exercise



- I. You are a coffee researcher and want to understand more about caffeine synthesis. Using the tools we discussed, do the following analyses with caffeine synthase.
  - I. Find some papers on caffeine synthase published since 2010.
  - 2. How many plant caffeine synthase protein sequences are in GenBank? How many are from *Coffea arabica*?
  - 3. How many species have a caffeine synthase homolog?
  - 4. Is caffeine synthase specific to the Gentianales clade or is it found elsewhere?
  - 5. Which of the homologs seem realistic? Download all *Coffea canephora* homolog sequences in fasta format and select full-length proteins. How many appear full-length?

Please save your results for the next exercise.



# Exercise I Solutions

#### Results: 6

Filters activated: Publication date from 2010/01/01 to 2014/01/01. Clear all to show 23 items.

- Identification and isolation of full-length cDNA sequences by sequencing and analysis of
- expressed sequence tags from guarana (Paullinia cupana), Figueirêdo LC, Faria-Campos AC, Astolfi-Filho S, Azevedo JL, Genet Mol Res. 2011 Jun 21;10(2):1188-99. doi: 10.4238/vol10-2gmr1124. PMID: 21732283 [PubMed - indexed for MEDLINE] Free Article Related citations
- Producing low-caffeine tea through post-transcriptional silencing of caffeine synthase mRNA.
- Mohanpuria P, Kumar V, Ahuja PS, Yadav SK. Plant Mol Biol. 2011 Aug;76(6):523-34. doi: 10.1007/s11103-011-9785-x. Epub 2011 May 12. PMID: 21562910 [PubMed - indexed for MEDLINE] Related citations
- Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia

sinensis L. Mohanpuria P, Kumar V, Ahuja PS, Yadav SK. Mol Biotechnol. 2011 Jul;48(3):235-43. doi: 10.1007/s12033-010-9364-4. PMID: 21181507 [PubMed - indexed for MEDLINE] Related citations

A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response

 to Penicillium digitatum infection. González-Candelas L, Alamar S, Sánchez-Torres P, Zacarías L, Marcos JF. BMC Plant Biol. 2010 Aug 31;10:194. doi: 10.1186/1471-2229-10-194. PMID: 20807411 [PubMed - indexed for MEDLINE] Free PMC Article Related citations

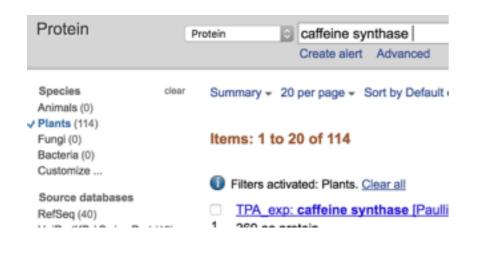
- Essential region for 3-N methylation in N-methyltransferases involved in caffeine biosynthesis.
- Mizuno K, Kurosawa S, Yoshizawa Y, Kato M. Z Naturforsch C. 2010 Mar-Apr;65(3-4):257-65.
   PMID: 20469646 [PubMed - indexed for MEDLINE] <u>Related citations</u>
- Expression for caffeine biosynthesis and related enzymes in Camellia sinensis.
- Kato M, Kitao N, Ishida M, Morimoto H, Irino F, Mizuno K. Z Naturforsch C. 2010 Mar-Apr;85(3-4):245-56. PMID: 20469545 [PubMed - Indexed for MEDLINE] <u>Related citations</u>

- Find some papers on caffeine synthase published since 2010.
  - use pubmed (<u>http://</u> <u>www.ncbi.nlm.nih.gov/</u> <u>pubmed</u>



Ø

Search


# Exercise I Solutions

- 2. How many plant caffeine synthase protein sequences are in GenBank? How many are from *Coffea arabica*?
  - I I 4 proteins total are from plants, 21 from C. arabica (<u>http://www.ncbi.nlm.nih.gov/protein</u>)

#### Protein

caffeine synthase[Protein Name]

Save search Advanced



#### Results by taxon

Top Organisms [Tree] Coffea arabica (21) Camellia sinensis (15) Coffea canephora (10) Coffea eugenioides (8) Eucalyptus grandis (5) Ananas comosus (5) Triticum urartu (5) Beta vulgaris subsp. vulgaris (4) Capsicum annuum (4) Amborella trichopoda (4) Ricinus communis (3) Jatropha curcas (3) Paulinia cupana var. sorbilis (3) Citrus sinensis (3) Arachis ipaensis (2) Gossypium raimondii (2) Coffea benghalensis (2) Erythranthe guttata (2) Populus euphratica (1) Glycine max (1) All other taxa (11) Less...



# Exercise I Solutions

#### 3.31 species:

#### Results by taxon

Top Organisms [Tree] Coffea arabica (21) Camellia sinensis (15) Coffea canephora (10) Coffea eugenioides (8) Eucalyptus grandis (5) Ananas comosus (5) Triticum urartu (5) Beta vulgaris subsp. vulgaris (4) Capsicum annuum (4) Amborella trichopoda (4) Ricinus communis (3) Jatropha curcas (3) Paulinia cupana var. sorbilis (3) Citrus sinensis (3) Arachis ipaensis (2) Gossypium raimondii (2) Coffea benghalensis (2) Erythranthe guttata (2) Populus euphratica (1) Glycine max (1) All other taxa (11) Less....

#### \*click on "Tree" for next question



# Exercise I Solutions (cont'd)

4. How many species have a caffeine synthase homolog?

 Found in Gentianales, Ericales, Sapindales, Malvales, etc

\*click on "List" for next answer

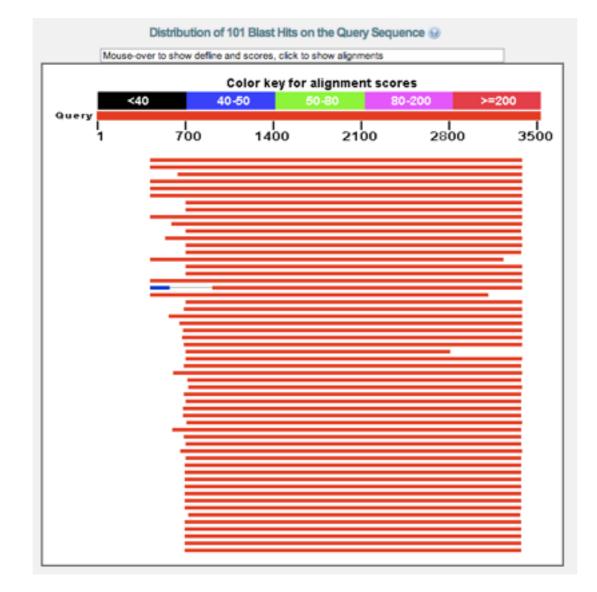
Results by taxon

```
Taxonomic Groups [List]
  flowering plants (114)
     eudicots (100)
       Gentianales (41)
       Ericales (17)
       Malpighiales (7)
         Euphorbiaceae (6)
         Salicaceae (1)
       Sapindales (6)
       Fabales (5)
       Myrtales (5)
       Solanales (5)
       Caryophyllales (4)
       Malvales (3)
       Rosales (2)
       Brassicales (2)
       Lamiales (2)
       Vitales (1)
     monocots (10)
       Bromeliaceae (5)
       Poaceae (5)
     Amborellales (4)
```

# Exercise I Solutions (cont'd)

5. Which of the homologs seem realistic? Download all *Coffea canephora* homolog sequences in fasta format and select full-length proteins. How many appear full-length?

 Coffea arabica, Coffea canephora, Camellia sinensis, Theobroma cacao, Paullinia. 7 sequences appear to be full-length.


|                                         | Choose Destination           | -       |
|-----------------------------------------|------------------------------|---------|
|                                         | Clipboard<br>Collections     | sequ    |
| Plants. Clear all                       |                              | with    |
| ne synthase, partial [Coffea canephora] | Download 10 items.<br>Format | d Do    |
| 0037.1 GI: 312964508                    | FASTA                        | _ L     |
| cal Proteins FASTA Graphics             | Sort by Default order        | ta      |
| ne synthase [Coffea canephora]          | Create File                  |         |
| 6155.1 GI: 33391746                     |                              |         |
| cal Proteins FASTA Graphics             |                              |         |
|                                         | Search of                    | details |
| ne synthase [Coffea canephora]          |                              |         |

Filters: Manage Filters

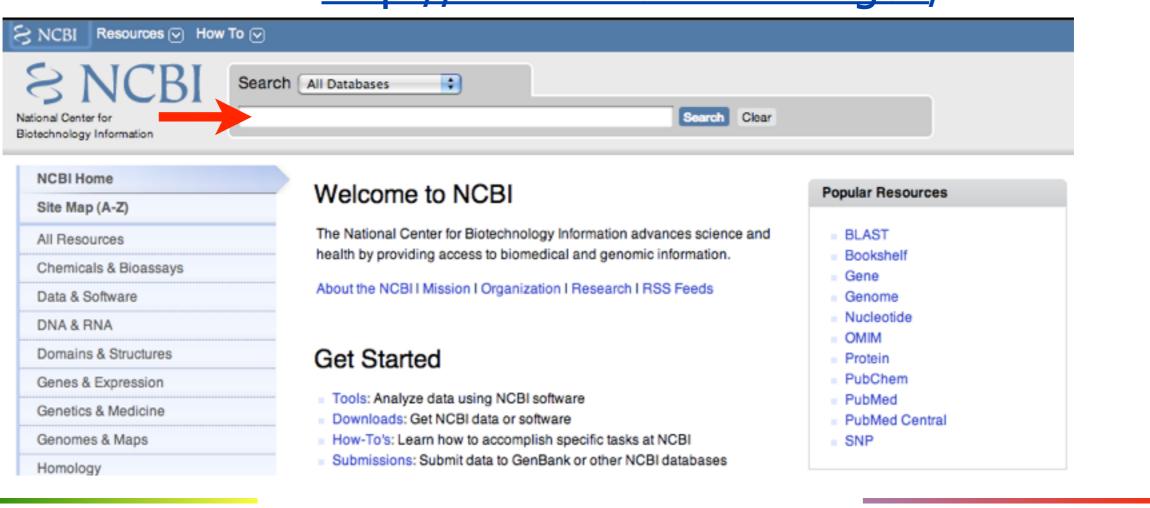
(caffeine syntham OR (caffeine[All



## Part II: Web Tools






# Bioinformatic Web Tools:

- I Search Tools:
  - I.I By Ontology.
  - I.2 By Sequence Homology/Similarity (Blast).
  - I.3 By Sequence/Chromosome coordinates (GBrowse).
- 2 Manipulation and Sequence Analysis Tools:
  - 2.1 Translators and Gene Predictors.
  - 2.2 Multiple Sequence Alignment(Clustalw).
  - 2.3 Protein Domain Analysis (InterProScan).
  - 2.4 Signal Peptide Analysis (SignalP).
- 3 Other Tools:
  - 3.1 Linkage Map Viewers (CViewer).
  - 3.2 Primer Design (Primer3).
- 4 Web Pages with Multiple Tools.



#### **Text Searches:**

One or more words are introduced in a box. The system use them to search coincidences with database fields or file sections such as genomic annotations.



## NCBI: <a href="http://www.ncbi.nlm.nih.gov/">http://www.ncbi.nlm.nih.gov/</a>

#### I. Search Tools



#### **Text Searches:**

### TAIR: <a href="http://www.arabidopsis.org/">http://www.arabidopsis.org/</a>

| 20     |         |             |                  | $\rightarrow$ |        | Gene | 🛊 Search    |
|--------|---------|-------------|------------------|---------------|--------|------|-------------|
| tair   | Home He | p Contact A | bout Us Login/Re | gister        |        |      |             |
| Search | Browse  | Tools       | Portals          | Download      | Submit | News | ABRC Stocks |

#### The Arabidopsis Information Resource

The Arabidopsis Information Resource (TAIR) maintains a database of genetic and molecular biology data for the model higher plant *Arabidopsis thaliana*. Data available from TAIR includes the complete genome sequence along with gene structure, gene product information, metabolism, gene expression, DNA and seed stocks, genome maps, genetic and physical markers, publications, and information about the Arabidopsis research community. Gene product function data is updated every two weeks from the latest published research literature and community data submissions. Gene structures are updated 1-2 times per year using computational and manual methods as well as community submissions of new and updated genes. TAIR also provides extensive linkouts from our data pages to other Arabidopsis resources.

The Arabidopsis Biological Resource Center at The Ohio State University collects, reproduces, preserves and distributes seed and DNA resources of *Arabidopsis thaliana* and related species. Stock information and ordering for the ABRC are fully integrated into TAIR.

CARNEGIE TAIR is located at the Carnegie Institution for Science Department of Plant Biology and funded by the National Science Foundation.



- Subscribe to news feed
- Follow our Twitter feed
- Join our Facebook group

#### GBrowse now available for eight plant species at TAIR [May 19, 2011]

GBrowse instances for the following plants have been added to TAIR: Arabidopsis lyrata, Brachypodium distachyon, Oryza sativa japonica, Oryza sativa indica, Populus trichocarpa, Physcomitrella patens, Sorghum bicolor, Vitis vinifera, Zea mays.

Updates on TAIR funding are available here.



# Bioinformatic Web Tools:

- I Search Tools:
  - I.I By Ontology.
  - I.2 By Sequence Homology/Similarity (Blast).
  - I.3 By Sequence/Chromosome coordinates (GBrowse).
- 2 Manipulation and Sequence Analysis Tools:
  - 2.1 Translators and Gene Predictors.
  - 2.2 Multiple Sequence Alignment(Clustalw).
  - 2.3 Protein Domain Analysis (InterProScan).
  - 2.4 Signal Peptide Analysis (SignalP).
- 3 Other Tools:
  - 3.1 Linkage Map Viewers (CViewer).
  - 3.2 Primer Design (Primer3).
- 4 Web Pages with Multiple Tools.

#### I. Search Tools



#### Sequence homology/similarity searches:

It is based in the sequence comparison through a pair sequence alignment using different algorithms (blast, uses an approach to the Smith-Waterman algorithm). Matched sequences (hits) with some statistical values are selected and returned as result.

Most used programs are:

- Blast: (faster) http://blast.ncbi.nlm.nih.gov/Blast.cgi
- Fasta (sensitive): <u>http://www.ebi.ac.uk/Tools/sss/fasta/</u>

More information at: http://en.wikipedia.org/wiki/Sequence\_alignment\_software





#### Sequence homology/similarity searches:

### NCBI: <a href="http://blast.ncbi.nlm.nih.gov/Blast.cgi">http://blast.ncbi.nlm.nih.gov/Blast.cgi</a>

| BLAST ®                          |                                                             | Basic Local Alignment S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Search Tool                     |
|----------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Home Recent                      | Results Saved Strategies                                    | Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| CBI/ BLAST Home                  |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| BLAST finds regio                | ons of similarity between biolo                             | ogical sequences. more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
|                                  | New Aligning Multi                                          | ple Protein Sequences? Try the COB/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ALT Multiple Alignment Tool. Go |
| BLAST Assemi                     | bled RefSeq Genomes                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| Choose a species g               | enome to search, or list all ger                            | nomic BLAST databases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |
| Human                            |                                                             | <u>Oryza sativa</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gallus gallus                   |
| Mouse                            | 0                                                           | Bos taurus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pan troglodytes                 |
| <u>Rat</u>                       |                                                             | N. N. L. N. | Microbes                        |
| Arabidopsis th<br>Arabidopsis th | anana G                                                     | Drosophila melanogaster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Apis mellifera                  |
| Basic BLAST                      |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| Choose a BLAST pr                | ogram to run.                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
|                                  |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| nucleotide blast                 | Search a nucleotide database<br>Algorithms: blastn, megat   | e using a nucleotide query<br>blast, discontiguous megablast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |
|                                  | Search protein database usin                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| protein blast                    | Algorithms: blastp, psi-bla                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| protein blast<br><u>blastx</u>   | Algorithms: blastp, psi-bla                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
|                                  | Algorithms: blastp, psi-bla<br>Search protein database usin | ast, phi-blast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |

#### I. Search Tools



#### Sequence homology/similarity searches:

### **TAIR:** <u>http://www.arabidopsis.org/Blast/index.jsp</u> <u>http://www.arabidopsis.org/cgi-bin/fasta/nph-TAIRfasta.pl</u>

|                                      |                |                 |                    |            |          | Gene | Search      |        |                                                  |           |             |                    |                     |        | Gene | \$ Search   |
|--------------------------------------|----------------|-----------------|--------------------|------------|----------|------|-------------|--------|--------------------------------------------------|-----------|-------------|--------------------|---------------------|--------|------|-------------|
| tair                                 | Home Help      | Contact Ale     | out Us Login/Regis | er.        |          |      |             | tair   | Home He                                          | lp Conta  | ct About    | Us Login/Regis     | lor                 |        |      |             |
| Search                               | Browse         | Tools           | Portals            | Download   | Submit   | News | ABRC Stocks | Search | Browse                                           | Tools     |             | Portals            | Download            | Submit | News | ABRC Stocks |
| Home > Tool                          | ST 2.2.8       | NCBI BLAST      | 12.2.8, and NOT WI | LBI AST2 0 |          |      |             |        | FASTA<br>Name of query<br>Enter a query          |           |             | t: raw or fasta)   | ]                   |        |      |             |
| Blast                                |                |                 | BLASTN: NT query   |            |          | •    |             |        | OR<br>Upload a file                              | containir |             | sequence: (for     | nat: row or fact    | a).    |      |             |
| Datasets                             |                | (               | TAIR10 Transcript  |            | s) (DNA) | •    |             |        | Choose File                                      |           |             | sequence: (ion     | mail: raiw or fast  | a)     |      |             |
| Input:<br>e query<br>locus<br>(At1g0 |                |                 |                    |            |          |      |             |        | (Submit)                                         | Reset     |             | Transcripts (-intr |                     | (A)    |      |             |
| Upload a<br>Raw, FAS<br>Filter o     | TA, GCG and RS | F formats accep | Choose File No f   | ile chosen |          |      |             |        | Query Dat<br>DNA DN<br>Protein Pro<br>Protein DN | A f       | lasta3      | rches both strands | 5                   |        |      |             |
| Advar                                | nced BLAST"    | Parameter (     | Options            |            |          |      | +           |        | DNA Pro<br>Options                               | tein t    | astx3, forw | ard 3 frames, see  | options for reverse | 0      |      |             |





#### Sequence homology/similarity searches:

### SGN: <u>http://solgenomics.net/tools/blast/index.pl</u>

| maps               | genomes             | tools                                                                             | sol search                                                                                |
|--------------------|---------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                    | NCRT RI             | ACT                                                                               | log in   new user                                                                         |
|                    | NCBI BL             | AST                                                                               |                                                                                           |
|                    | Simple              | dvanced                                                                           |                                                                                           |
|                    |                     |                                                                                   |                                                                                           |
| SGN Tomato Comb    | ined - WGS, BAC,    | and unigene sequenc                                                               | tes 🔹 🛊 db details                                                                        |
| BLASTN (nucleotide | to nucleotide)      |                                                                                   | \$                                                                                        |
|                    |                     |                                                                                   |                                                                                           |
|                    | Query seq           |                                                                                   |                                                                                           |
| single s           |                     | dvanced for multiple                                                              |                                                                                           |
| single s           |                     |                                                                                   | Cincil Scoreb                                                                             |
|                    |                     |                                                                                   | Clear Search                                                                              |
|                    | equence only, use A |                                                                                   | Clear Search                                                                              |
|                    |                     | Simple Ar<br>SGN Tomato Combined - WGS, BAC,<br>BLASTN (nucleotide to nucleotide) | SGN Tomato Combined - WGS, BAC, and unigene sequence<br>BLASTN (nucleotide to nucleotide) |



#### **Blast:**

It is a tool designed to find regions with local similarity for a sequence pair. It compare nucleotides or protein sequences and calculate the statistical significance.

#### **Blast Programs:**

|          | INPUT                 |            |                       |         |  |  |  |
|----------|-----------------------|------------|-----------------------|---------|--|--|--|
|          |                       | Nucleotide | Translated Nucleotide | Protein |  |  |  |
| DATABASE | Nucleotide            | BlastN     | -                     | -       |  |  |  |
| DAIADAJE | Translated Nucleotide | -          | TBlastX               | TBlastN |  |  |  |
|          | Protein               | -          | BlastX                | BlastP  |  |  |  |

I.2 -Search by Sequence Homology



#### Blast uses:

Homologous gene search:

BlastX (input=cDNA, database=proteins). BlastP (input=protein, database=proteins). TBlastN (input=proteins, database=cDNA)

Intron-Exon alignment:

BlastN (input=cDNA, database=genomic DNA). (better Blat or GeneWise)

SNP search:

BlastN (input=cDNA,gDNA, database=cDNA,gDNA).

I.2 -Search by Sequence Homology



Blast terminology:

Query: Input sequence.

Subject: Sequence from the database

Query Coverage: Percentage of the input sequence cover by the database sequence.

*E-value (expect value)*: Expected hits at random. It depends from the database size and it decrease exponentially with the sequence pair score.

% *identity*: Identity percentage for a sequence pair.



# Bioinformatic Web Tools:

- I Search Tools:
  - I.I By Ontology.
  - I.2 By Sequence Homology/Similarity (Blast).
  - I.3 By Sequence/Chromosome coordinates (GBrowse).

#### 2 - Manipulation and Sequence Analysis Tools:

- 2.1 Translators and Gene Predictors.
- 2.2 Multiple Sequence Alignment(Clustalw).
- 2.3 Protein Domain Analysis (InterProScan).
- 2.4 Signal Peptide Analysis (SignalP).

### 3 - Other Tools:

- 3.1 Linkage Map Viewers (CViewer).
- 3.2 Primer Design (Primer3).
- 4 Web Pages with Multiple Tools.

2 - Manipulation and Sequence Analysis Tools



There are dozens of sequence manipulation tools with different licenses or for different operating systems.

- + Commercial package: LaserGene (DNAStar) (<u>http://www.dnastar.com/t-products-lasergene.aspx</u>)
- + Free packages: BioEdit (Windows) (<u>http://www.mbio.ncsu.edu/bioedit/bioedit.html</u>) eBioTools (MacOS) (<u>http://www.ebioinformatics.org/</u>) Mega (Win/OSX) (<u>http://www.megasoftware.net/</u>)

Some databases have programs with similar functions integrated with the database interface.



# Bioinformatic Web Tools:

- I Search Tools:
  - I.I By Ontology.
  - I.2 By Sequence Homology/Similarity (Blast).
  - I.3 By Sequence/Chromosome coordinates (GBrowse).
- 2 Manipulation and Sequence Analysis Tools:
  - 2.1 Translators and Gene Predictors.
  - 2.2 Multiple Sequence Alignment(Clustalw).
  - 2.3 Protein Domain Analysis (InterProScan).
  - 2.4 Signal Peptide Analysis (SignalP).
- 3 Other Tools:
  - 3.1 Linkage Map Viewers (CViewer).
  - 3.2 Primer Design (Primer3).
- 4 Web Pages with Multiple Tools.

2.1 - Translators and Gene Predictors.



There are two tools types to find the right ORF for an expressed nucleotide sequence.

- Select the longest ORF.
- Gene prediction based on the exon-intron structure

Tool types:

- Translators (DNA to proteins without exon-intron consideration, and analyzing all the possible ORFs). Use coding.
- Gene Predictors (DNA to CDS considering the intron-exon structure). They require software training with manually curated intron-exon structures.

2.1 - Translators and Gene Predictors.



Web-based translator programs:

- Translate Tool (ExPASy): <u>http://expasy.org/tools/dna.html</u>
- ORF Finder (NCBI): <u>http://www.ncbi.nlm.nih.gov/projects/gorf/</u>
- Transeq (EBI): <u>http://www.ebi.ac.uk/Tools/emboss/transeq/</u>
- RevTrans I.4 Server (CBS): <u>http://www.cbs.dtu.dk/services/RevTrans/</u>
- Transeq (UMass): <u>http://biotools.umassmed.edu/cgi-bin/biobin/transeq</u>
- Dnatoprotein (JHI): <u>http://www.dnatoprotein.com</u>/
- EstScan (embnet): <u>http://www.ch.embnet.org/software/ESTScan2.html</u>

2.1 - Translators and Gene Predictors.



• Transeq (EBI): <u>http://www.ebi.ac.uk/Tools/emboss/transeq/</u>

| EMBL-EBI                                          |                                                                                                                                                                                                                               |             | Enter Text H   | lere        |       | Find | Help Feedback  |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-------------|-------|------|----------------|--|--|--|
| Databases Tools                                   | Research                                                                                                                                                                                                                      | Training    | Industry       | About Us    | Help  | 1    | Site Index 🔊 🎒 |  |  |  |
| <ul><li>Help Index</li><li>General Help</li></ul> | EBI > Tools > Sequence Analysis > EMBOSS EMBOSS Transeq                                                                                                                                                                       |             |                |             |       |      |                |  |  |  |
| Formats<br>Gaps<br>Matrix                         | <u>Transeq</u> translates nucleic acid sequences to the corresponding peptide sequence. It can translate in any the 3 forward or three reverse sense frames, or in all three forward or reverse frames, or in all six frames. |             |                |             |       |      |                |  |  |  |
| References<br>EMBOSS-Transeq Help                 | Fran                                                                                                                                                                                                                          | ne          | _              | indard Code | Table |      | •              |  |  |  |
| Emboss Programmatic<br>Access                     | ST. F<br>-1<br>-2                                                                                                                                                                                                             |             | Trim           | )           | No 🛟  | _    | Colour<br>No 🛟 |  |  |  |
|                                                   | Enter or R<br>6                                                                                                                                                                                                               | ucleic acid | Sequence in an | y format:   |       |      | Help           |  |  |  |
|                                                   |                                                                                                                                                                                                                               |             |                |             |       |      |                |  |  |  |
|                                                   |                                                                                                                                                                                                                               |             |                |             |       |      |                |  |  |  |
|                                                   | Upload a file: (                                                                                                                                                                                                              | Choose File | No file chosen |             |       | Run  | Reset          |  |  |  |

2.1 - Translators and Gene Predictors.



Web-based gene predictor programs:

• FGENESH (ULondon):

http://mendel.cs.rhul.ac.uk/mendel.php?topic=fgen-file

• GENESCAN (MIT):

http://genes.mit.edu/GENSCAN.html

• GeneMark.hmm (GaTech):

http://opal.biology.gatech.edu/GeneMark/eukhmm.cgi

• Augustus:

http://augustus.gobics.de/submission



# Bioinformatic Web Tools:

- I Search Tools:
  - I.I By Ontology.
  - I.2 By Sequence Homology/Similarity (Blast).
  - I.3 By Sequence/Chromosome coordinates (GBrowse).
- 2 Manipulation and Sequence Analysis Tools:
  - 2.1 Translators and Gene Predictors.
  - 2.2 Multiple Sequence Alignment (Clustalw).
  - 2.3 Protein Domain Analysis (InterProScan).
  - 2.4 Signal Peptide Analysis (SignalP).

### 3 - Other Tools:

- 3.1 Linkage Map Viewers (CViewer).
- 3.2 Primer Design (Primer3).
- 4 Web Pages with Multiple Tools.



There are programs for multiple sequence alignment (nucleotide or protein) such as ClustalW or Muscle

Some of them, as ClustalW, can create simple phylogenetic trees based in simple algorithms such as *Neighbor-Joining*.

- ClustalW (EBI): http://www.ebi.ac.uk/Tools/msa/clustalo/
- Kalign (EBI): <u>http://www.ebi.ac.uk/Tools/msa/kalign</u>
- MAFFT (EBI): <u>http://www.ebi.ac.uk/Tools/msa/mafft</u>
- MUSCLE (EBI): <u>http://www.ebi.ac.uk/Tools/msa/muscle</u>
- T-Coffee (EBI): <u>http://www.ebi.ac.uk/Tools/msa/tcoffee</u>



• ClustalW (EBI): http://www.ebi.ac.uk/Tools/msa/clustalo/

| 0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MKS<br>ARP<br>PEF<br>RIE<br>EGP | 52250891refINP_180705.11 F-box protein DOR [Arabidopsis thaliana]<br>QNVSVARQTILGRDENFEPIPIDLVIEIFSRSPVKSIARCRCVSKLWASILRLPYFTELYLTKSC<br>LFACQKHRELFFFSTPQPHNPNESSSPLAASFHMKIPFDGRFNIISPIGGLVFVRYEQILKGRKT<br>AICNPSTGQSLTLPKPKTRKRIWGTSHFGYDPIEKQFKVLSMNIGDGVYKEHYVLTLGTENLSWR<br>IPHVHGSKGICINGVLYYRAKADMFSGTLMIVCFDVRFEKFSYIKILKPTTTLISYNGKLASLVW<br>ICGKRFEMWVLGDPEKHEWLKHTYELRPRWQNVLGEDLLIFAGMTGTNEIVLSPKYPSHPFYVFY<br>NTIRRVEIQGMGAFKVNEDYIFLDHVEDVKLI                                                                   |
| MKT<br>LFL<br>DER<br>QVL<br>SSY | 97837229 ref XP_002886496.1  hypothetical protein ARALYDRAFT_893290 [Arabidopsis lyrata subsp. lyrata]<br>QNVSEDVVVVTERNKRAKTSNNGGEPIPFDLTVEICSRLPAKSISRFRCVLKLWGSILRLPYFTE<br>SLARPQLLFACHKDNHVFVFSSPQPQNIDDNNASSLLAANYHMKIPFYASSFERCSSVRGLVFFG<br>NGKEHKVSVICNPSTRQSLTLPKLKTRKRIGVRSYFGFEPIEKQYKVLSMTWGIYGTRDMDSEEH<br>GTRKPSWRMIECWIPHSLYHTYNNVCINGVLYYPAVNTSSKGFIIVSFDFRSEEFRFVEDTDTSI<br>PHLINYNGKLGSLGSGGFGGIGASCTSITLRVLEDAEKHEWSEHIYVLPAWWKNIFGGECTVLSV<br>TNEIVLSLRFPSTPFYVFYYNTERNAIRRVEIQGQEAFKDHSVYTFLDHVENVNMKLLEGF |
| MRT<br>FTE<br>ETV<br>PHI<br>RYC | 5239182 ref NP_201386.1  F-box protein [Arabidopsis thaliana]<br>RNVTENRLTISRRRTEKKTSPNKTEKSVQIPVDIIIEILLRLPAKSIATCRCVSKLWISVICRQD<br>LTRSLHRPQLLFCCKKDGNLFFFSSPQLQNPYENSSAISLKNFSLCYKISRPVNGLICFKRKEMN<br>ICNPSTGHTLSLPKPMKTSIGPSRFFVYEPIQKQFKVLLSYKSDEHQVLTLGTGELSWRIIECSM<br>MSEICINGVLYYPAINLSSGDYIIVCFDVRSEKFRFITVMEEFIKAAHDGTLINYNGKLASLVSE<br>DGRSKSIELWVLQDAEKKEWSKHTYVLPAWWQHRIGTLNLRFVGVTRTNEIMLSPCYQTVPFDVY<br>RKTMMSVAIQGMEAFQGHLVFTYLDHVENVKLLHNMF                                                                  |
| MRS<br>FLT<br>GRI<br>LGT<br>TTL | 5229553 ref NP_189038.1  putative F-box protein [Arabidopsis thaliana]<br>LHNVSEDRETLSRRNKRSKTSLNGHIPIDLLIEIFLKLPVKSIATCRSVSKFWTYVLGRQDFTEL<br>SSRPQLLFACANDNGYFFFSSNQPQNLDENSSPIAAYPLTHVPKSRDLGPPINGLVSLRGERILK<br>VDVSIIYNPSTGESLTLPKTNMTRKKIYTVTSFLGYDPIEKQYKVLSMNMSYEKHPKCEGYQVLT<br>LSWRMIKCCLNYQHPLKNSEICINGVLYYLAMVNGSSWPTRAVVCFDIRSEMFNFMEVYRELSYT<br>YNNGKLGMLMGQEAHKTISGICRSFELWVLEDTVKHEWSKHVYLLPPLWKDAVANTRLYFAGMIG<br>LFRPDEPLCVFYYNIDRNTIKRVGIRGLEAFKYFRIFLNHVENVKLF                                               |
| MST<br>FTN<br>DEW<br>LTL<br>YNG | 97819588 ref XP_002877677.1  hypothetical protein ARALYDRAFT_906230 [Arabidopsis lyrata subsp. lyrata]<br>KKRKRHVSKEDVALTISSSLGEYGENSGTLPMDLMVEILSRVPAKSAAKFHCVSKNWNSLLRSSY <br>LTRSPTRPRLLITFQAEGKWSFFSSPEYLISDQNSNLVVVDNHMDVPKDYSFGVCEPVCGLLCTR<br>SRKKDARMMICNPSTRQFQSLPKVRSRRNKVITYIGYDPIEKEYKVLCMTICERPYMFKAEEHQV<br>GKLKWRMLKCFVEHFPHHKEICINGVLYYLAVKDETREDIIVCFHVKHEKFQFILNKAPLSTLIN<br>GGIRHGFMEGGVAGYELWDLDIEKEDWTRHIHILPPMWKQVVGETRVYVVGMIGTSEIVFSPFVK<br>IFHLNIERNSITRVEIQGTGPLEGQQVYTFINHIENVKLIM                    |



• ClustalW (EBI): http://www.ebi.ac.uk/Tools/msa/clustalo/

#### Multiple Sequence Alignment

Clustal Omega is a new multiple sequence alignment program that uses seeded guide trees and HM three or more sequences. For the alignment of two sequences please instead use our pairwise seq

Enter or paste a set of **PROTEIN Sequences** in any supported format:

>gil85700271lgblABC74575.1l N-methyltransferase [Coffea canephora] MELREVLHMNEGEGDTSYAKNASYNLALAKVKPFLEQCIRELLRANLPNINKCIKVADLGCASGPNTLLT VRDIVQSIDKVGQEEKNELERPTIQIFLNDLFQNDFNSVFKLLPSFYRKLEKENGRKIGSCLISAMPGSF YGRPFPEESMHFLHSCYSVHWLSQVPSGLVIELGIGANKGSIYSSKGCRPPVQKAYLDQFTKDFTTFLRI HSKELFSRGRMLLTCICKVDEFDEPNPLDLLDMAINDLIVEGLLEEEKLDSFNIPFFTPSAEEVKCIVEE EGSCEILNLETFKAHYDAAFSIDDDYPVRSHEQIKAEYVASLIRSVYEPILASHFGEAIMPDLFHRLAKH AAKVLHMGKGCYNNLIISLAKKPEKSDV

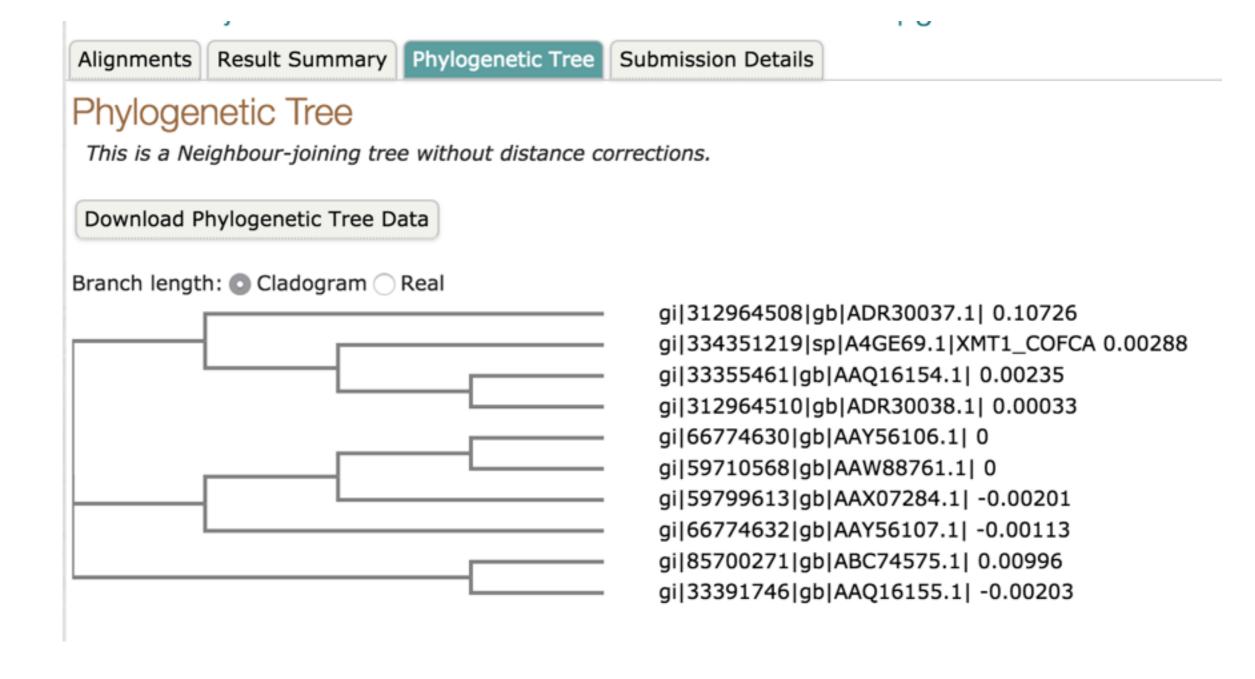
Or, upload a file: Choose File No file chosen

STEP 2 - Set your parameters

OUTPUT FORMAT Clustal w/o numbers

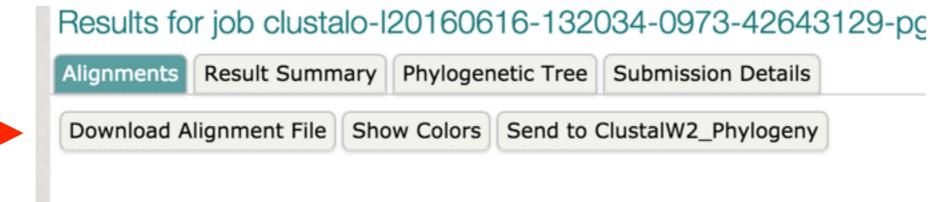
The default settings will fulfill the needs of most users and, for that reason, are not visible.

More options... (Click here, if you want to view or change the default settings.)




• ClustalW (EBI): http://www.ebi.ac.uk/Tools/msa/clustalo/

| nments                                                   | Result Summary                                                                       | Phylogenetic                         | Tree Submissio                                               | n Details                                                                                                                  |                                                    |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|
| ownload Alignment File Show Colors Sen                   |                                                                                      | d to ClustalW2_Phylogeny             |                                                              |                                                                                                                            |                                                    |  |
|                                                          |                                                                                      |                                      |                                                              |                                                                                                                            |                                                    |  |
| CLUSTA                                                   | L O(1.2.1) multipl                                                                   | e sequence al                        | ignment                                                      |                                                                                                                            |                                                    |  |
| ai   312                                                 | 964508 gb ADR30037                                                                   | .11                                  | LOEVLHMNGG                                                   | FGEASVAKNSSENGLULAKUKPULF                                                                                                  | OCURELL BANL PNTNKCTKVADI.                         |  |
| gi 334351219 sp A4GE69.1 XMT1_COFCA                      |                                                                                      |                                      | 14                                                           | LQEVLHMNGGEGEASYAKNSSFNQLVLAKVKPVLEQCVRELLRANLPNINKCIKVADL<br>MELQEVLRMNGGEGDTSYAKNSAYNQLVLAKVKPVLEQCVRELLRANLPNINKCIKVADL |                                                    |  |
| gi 33355461 gb AAQ16154.1                                |                                                                                      |                                      |                                                              | MELQEVLRMNGGEGDTSYAKNSAYNQLVLAKVKPVLEQCVRELLRANLPNINKCIKVADL                                                               |                                                    |  |
| gi 312964510 gb ADR30038.1                               |                                                                                      |                                      | MELQEVLRMNGGEGDTSYAKNSAYNQLVLAKVKPVLEQCVRELLRANLPNINKCIKVADL |                                                                                                                            |                                                    |  |
| gi 66774630 gb AAY56106.1                                |                                                                                      |                                      | MELQEVLHMNEGEGDTSYAKNASDN                                    |                                                                                                                            |                                                    |  |
| gi 59710568 gb AAW88761.1                                |                                                                                      | MELQEVLHMNEGEGDTSYAKNASDN            |                                                              |                                                                                                                            |                                                    |  |
| gi 85700271 gb ABC74575.1                                |                                                                                      |                                      | MELREVLHMNEG                                                 | MELREVLHMNEGEGDTSYAKNASYN-LALAKVKPFLEQCIRELLRANLPNINKCIKVADL                                                               |                                                    |  |
| gi 59799613 gb AAX07284.1                                |                                                                                      |                                      | MELQEVLHMNEG                                                 | MELQEVLHMNEGEGDTSYAKNASYN-LALAKVKPFLEQCIRELLRANLPNINKCIKVADL                                                               |                                                    |  |
| gi 33391746 gb AAQ16155.1                                |                                                                                      |                                      | MELQEVLHMNEG                                                 | MELQEVLHMNEGEGDTSYAKNASYN-LALAKVKPFLEQCIRELLRANLPNINKCIKVADL                                                               |                                                    |  |
|                                                          | gi 66774632 gb AAY56107.1                                                            |                                      |                                                              | MELQEVLHMNEGEGDTSYAKNASYN-LALAKVKPFLEQCIRELLRANLPNINKCIKVADL                                                               |                                                    |  |
|                                                          | /4032 gb AA15010/.                                                                   |                                      |                                                              |                                                                                                                            |                                                    |  |
|                                                          | 74632   GD   AAI 56107.                                                              |                                      | *:***:** *                                                   | **::****:: *                                                                                                               |                                                    |  |
| gi 667                                                   | 964508 gb AAI56107.                                                                  |                                      |                                                              | **::*****:: *<br>WDTVQSIDKVKQEMKNELERPTIQV                                                                                 | FLTDLFQNDFNSVVMLLPSFYRK                            |  |
| gi 667<br>gi 312                                         |                                                                                      | .1                                   | GCASGPNTLLTV                                                 |                                                                                                                            |                                                    |  |
| gi 667<br>gi 312<br>gi 334                               | 964508 gb ADR30037                                                                   | .1 <br> XMT1_COFCA                   | GCASGPNTLLTV                                                 | WDTVQSIDKVKQEMKNELERPTIQV                                                                                                  | FLNDLFPNDFNSVFKLLPSFYRK                            |  |
| gi 667<br>gi 312<br>gi 334<br>gi 333<br>gi 312           | 964508 gb ADR30037<br>351219 sp A4GE69.1<br>55461 gb AAQ16154.<br>964510 gb ADR30038 | .1 <br> XMT1_COFCA<br>1 <br>.1       | GCASGPNTLLTV<br>GCASGPNTLLTV<br>GCASGPNTLLTV                 | WDTVQSIDKVKQEMKNELERPTIQV<br>RDIVQSIDKVGQEKKNELERPTIQI                                                                     | FLNDLFPNDFNSVFKLLPSFYRK<br>FLNDLFPNDFNSVFKLLPSFYRK |  |
| gi 667<br>gi 312<br>gi 334<br>gi 333<br>gi 312<br>gi 667 | 964508 gb ADR30037<br>351219 sp A4GE69.1<br>55461 gb AAQ16154.                       | .1 <br> XMT1_COFCA<br>1 <br>.1 <br>1 | GCASGPNTLLTV<br>GCASGPNTLLTV<br>GCASGPNTLLTV                 | WDTVQSIDKVKQEMKNELERPTIQV<br>RDIVQSIDKVGQEKKNELERPTIQI<br>RDIVQSIDKVGQEKKNELERPTIQI                                        | FLNDLFPNDFNSVFKLLPSFYRK<br>FLNDLFPNDFNSVFKLLPSFYRK |  |




• ClustalW (EBI): http://www.ebi.ac.uk/Tools/msa/clustalo/





• ClustalW (EBI): http://www.ebi.ac.uk/Tools/msa/clustalo/



CLUSTAL O(1.2.1) multiple sequence alignment

# The alignment can be downloaded to be used by phylogenetic programs like Protpars (from Phylip package).

|                                                                          |     |         |            | Protein parsimony algorithm, Version 3. |
|--------------------------------------------------------------------------|-----|---------|------------|-----------------------------------------|
| phylip 3.67: protpars                                                    | Run | (Reset) |            |                                         |
| Protein Sequence Parcimony Method 2                                      |     |         |            | One most parsimonious tree found:       |
| Alignment File 2 [use example data]                                      |     |         |            |                                         |
| paste upload                                                             |     |         | EDIT CLEAR |                                         |
| Enter your data below:                                                   |     |         |            |                                         |
| INVOLVENT - ATTRACTOR ANTAL ANTAL ANTAL ANTAL ANTAL ANTAL ANTAL          |     |         | 8          | +ArFbox2                                |
| EIQGMGAEKX NEDYJELDHV EDVKLI                                             |     |         |            | +3                                      |
| BIOGOEAFKD HSVYTFLDHX ENVNMKLLEG F<br>AIOGMEAFOG HLVFTYLDHX ENVKLLHNME - |     |         | *          | +AtFbox1                                |
| GIRGLEADEY FRIFLNHV ENVKLF<br>EIOCTGPLEG OQVYTFINHI ENVKLM               |     |         | ×.         | I I +ARALY 9062                         |
|                                                                          |     |         | a          | 1 +4                                    |
| Parcimony options                                                        |     |         |            | +ARALY_8932                             |
| Use Threshold parsimony (T) No C                                         |     |         |            | -                                       |
| <ul> <li>Threshold parsimony value</li> </ul>                            |     |         |            | +AtDOR                                  |
| Genetic code for 'categories' model (C) Universal (U)                    |     |         |            | remember: this is an unrooted tree!     |
|                                                                          |     |         |            |                                         |
|                                                                          |     |         |            |                                         |
| Web-based Phylip package:                                                |     |         |            | requires a total of 1060.000            |
|                                                                          |     |         |            |                                         |

http://mobyle.pasteur.fr/cgi-bin/portal.py?#welcome



- I Search Tools:
  - I.I By Ontology.
  - I.2 By Sequence Homology/Similarity (Blast).
  - I.3 By Sequence/Chromosome coordinates (GBrowse).

#### 2 - Manipulation and Sequence Analysis Tools:

- 2.1 Translators and Gene Predictors.
- 2.2 Multiple Sequence Alignment (Clustalw).

#### 2.3 - Protein Domain Analysis (InterProScan).

2.4 - Signal Peptide Analysis (SignalP).

#### 3 - Other Tools:

- 3.1 Linkage Map Viewers (CViewer).
- 3.2 Primer Design (Primer3).
- 4 Web Pages with Multiple Tools.



Some of the functional annotations are made by homology search with conserved protein fragments or **domains**.

InterPro (<u>http://www.ebi.ac.uk/interpro/</u>) is an EBI resource with several protein domain databases such as *ProSite*, *Pfam* or *Superfamily*.



The tools used for functional domain search is InterProScan (http://www.ebi.ac.uk/interpro/search/sequence-search).

#### 2.3 - Protein Domain Analysis



#### InterProScan (http://www.ebi.ac.uk/interpro/search/sequence-search).

| Protein sequence analysis & classification |       |    |                       |          |                |      |         |
|--------------------------------------------|-------|----|-----------------------|----------|----------------|------|---------|
| Home                                       | Searc | h  | Release notes         | Download | About InterPro | Help | Contact |
| By sequence B                              |       | Ву | y domain architecture |          |                |      |         |

#### InterProScan sequence search

This form allows you to scan your sequence for matches against the InterPro protein InterProScan tool.

Enter or paste a protein sequence in FASTA format (complete or not - e.g. PMPIGSKE with a maximum length of 40,000 amino acid long.

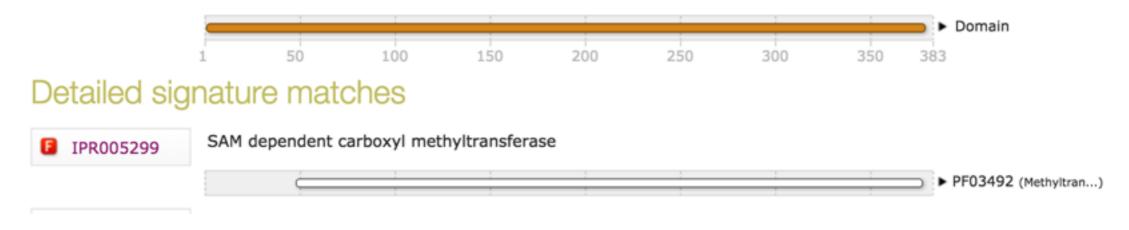
Please note that you can only scan one sequence at a time.

| Analyse your protein sequence           |  |
|-----------------------------------------|--|
|                                         |  |
| <ul> <li>Advanced options</li> </ul>    |  |
| Search I Clear Example protein sequence |  |

#### 2.3 - Protein Domain Analysis



#### InterProScan (http://www.ebi.ac.uk/interpro/search/sequence-search).


#### ADR30037.1

Length 383 amino acids

#### Protein family membership

SAM dependent carboxyl methyltransferase (IPR005299)

#### Domains and repeats





- I Search Tools:
  - I.I By Ontology.
  - I.2 By Sequence Homology/Similarity (Blast).
  - I.3 By Sequence/Chromosome coordinates (GBrowse).

#### 2 - Manipulation and Sequence Analysis Tools:

- 2.1 Translators and Gene Predictors.
- 2.2 Multiple Sequence Alignment (Clustalw).
- 2.3 Protein Domain Analysis (InterProScan).

#### 2.4 - Signal Peptide Analysis (SignalP).

#### 3 - Other Tools:

- 3.1 Linkage Map Viewers (CViewer).
- 3.2 Primer Design (Primer3).
- 4 Web Pages with Multiple Tools.

#### 2.4 - Signal Peptide Analysis



A signal peptide is a short (3-60 amino acids long) peptide chain that directs the transport of a protein. Signal peptides may also be called targeting signals, signal sequences, transit peptides, or localization signals. (wikipedia).

| Examples: | Transport to the nucleus (NLS)<br>Transport to the endoplasmic reticulum | -Pro-Pro-Lys-Lys-Lys-Arg-Lys-Val-<br>H <sub>2</sub> N-Met-Met-Ser-Phe-Val-Ser-Leu-<br>Leu-Leu-Val-Gly-Ile-Leu-Phe-<br>Trp-Ala-Thr-Glu-Ala-Glu-Gln-<br>Leu-Thr-Lys-Cys-Glu-Val-Phe-<br>Gln- |
|-----------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Retention to the endoplasmic reticulum                                   | -Lys-Asp-Glu-Leu-COOH                                                                                                                                                                      |
|           | Transport to the mitochondrial matrix                                    | H <sub>2</sub> N-Met-Leu-Ser-Leu-Arg-Gln-Ser-<br>Ile-Arg-Phe-Phe-Lys-Pro-Ala-<br>Thr-Arg-Thr-Leu-Cys-Ser-Ser-<br>Arg-Tyr-Leu-Leu-                                                          |
|           | Transport to the peroxisome (PTS1)                                       | -Ser-Lys-Leu-COOH                                                                                                                                                                          |
|           | Transport to the peroxisome (PTS2)                                       | H <sub>2</sub> NArg-Leu-X <sub>5</sub> -His-Leu-                                                                                                                                           |

SignalP (<u>http://www.cbs.dtu.dk/services/SignalP/</u>) is a program to predict signal peptides.



- I Search Tools:
  - I.I By Ontology.
  - I.2 By Sequence Homology/Similarity (Blast).
  - I.3 By Sequence/Chromosome coordinates (GBrowse).
- 2 Manipulation and Sequence Analysis Tools:
  - 2.1 Translators and Gene Predictors.
  - 2.2 Multiple Sequence Alignment (Clustalw).
  - 2.3 Protein Domain Analysis (InterProScan).
  - 2.4 Signal Peptide Analysis (SignalP).

#### 3 - Other Tools:

- 3.1 Linkage Map Viewers (CViewer).
- 3.2 Primer Design (Primer3).
- 4 Web Pages with Multiple Tools.

#### 3.2 - Primer Design.



There are some web-based tools to design primers or to check the possible amplify fragments with the primers designed.

• Primer-Blast (NCBI) (design):

http://www.ncbi.nlm.nih.gov/tools/primer-blast/

• Primer3 (design):

http://frodo.wi.mit.edu/primer3/

• In-Silico PCR (SGN) (fragment analysis):

http://solgenomics.net/tools/insilicopcr/index.pl

#### 3.2 - Primer Design.



• Primer3 (design): <u>http://frodo.wi.mit.edu/primer3/</u>

#### Copy the downloaded sequence to Primer3. Change min. size to I 23 pb (intron size) Change target to 200 (intron start), I 23 (intron length)

| Drimor?                                                                                                                                                                                                                                                                                                                         |                                                                               | Checks for mispriming in template.                            | disclaimer       | Primer3 Home           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|------------------|------------------------|
| Primer3 (v. 0.4.0) Pick primers from a DNA                                                                                                                                                                                                                                                                                      | equence.                                                                      | Primer3plus interface                                         | cautions         | FAQ/WIKI               |
| Paste source sequence below (5'->3', string of ACGTNacg<br>ALUs, LINEs, etc.) or use a <u>Mispriming Library (repeat lib</u>                                                                                                                                                                                                    |                                                                               | bers and blanks ignored). FASTA format ok. Please             | e N-out undesira | ble sequence (vector,  |
| AACGTCAATGAATAGATAGATGGCTGCCGCGCGCAATCCAAAGTTCCCCC<br>CCACCACCACTTCCACCCTCACCTGGTGGCTCATTACCAAAGTTCTTGA<br>CTCCCCATTTCCACTAAAACTCCTCAGTCCTCACACAATCCGCCTTCAAAA<br>TTATTCAAGAATCACAAAACCTACATATCAGATCAACAAGTTAATTCCCT<br>CCTTTTTCCTTATCATACTGTTCAACCCTTCACATAAATGTACATCTATT<br>CAGTTAATTAAAAGCAAAATATACCTGGAAAGAGATCAAAAATCAATTT | AATGATAATTA<br>CCTCAGCTCTG<br>TCCCTTTGAA<br>TACAAACACA                        |                                                               |                  |                        |
| Pick left primer,<br>or use left primer below:                                                                                                                                                                                                                                                                                  | dization probe (internal oligo), or us                                        | e oligo below: Pick right primer, or use right primer         | mer below (5' to | 3' on opposite strand) |
|                                                                                                                                                                                                                                                                                                                                 |                                                                               |                                                               |                  |                        |
| Pick Primers       Reset Form         Sequence Id:       A string to identify you                                                                                                                                                                                                                                               | r output.                                                                     |                                                               |                  |                        |
|                                                                                                                                                                                                                                                                                                                                 | ers to surround the 2 bases at positio<br>at flank the central CCCC.          | ons 50 and 51. Or mark the source sequence with [ a           | ind ]: e.gATC    | T[CCCC]TCAT            |
|                                                                                                                                                                                                                                                                                                                                 | selection of primers in the 7 bases s<br>T. forbids primers in the central CO | tarting at 401 and the 3 bases at 68. Or mark the sol<br>CCC. | urce sequence w  | ith < and >: e.g.      |
| Product Size Ranges 123-223                                                                                                                                                                                                                                                                                                     |                                                                               |                                                               |                  |                        |
| Number To Return 5 Max 3'                                                                                                                                                                                                                                                                                                       | Stability 9.0                                                                 |                                                               |                  |                        |
| Max Repeat Mispriming 12.00 Pair Max Repeat Mi                                                                                                                                                                                                                                                                                  | spriming 24.00                                                                |                                                               |                  |                        |
| Max Template Mispriming 12.00 Pair Max Template Mi                                                                                                                                                                                                                                                                              | spriming 24.00                                                                |                                                               |                  |                        |
| Pick Primers Reset Form                                                                                                                                                                                                                                                                                                         |                                                                               |                                                               |                  |                        |

#### 3.2 - Primer Design.



• Primer3 (design): <u>http://frodo.wi.mit.edu/primer3/</u>

<<<<< right primer

```
No mispriming library specified
Using 1-based sequence positions
OLIGO
              <u>start len</u>
                           tm gc% any 3' seg
LEFT PRIMER
              157 19 60.20 52.63 3.00 3.00 ATCCGCCTTCAAACCTCAG
                373 21 59.51 47.62 2.00 2.00 AAGGGGTTGGTGAGTTTTAGC
RIGHT PRIMER
SEQUENCE SIZE: 524
INCLUDED REGION SIZE: 524
PRODUCT SIZE: 217, PAIR ANY COMPL: 6.00, PAIR 3' COMPL: 3.00
TARGETS (start, len)*: 200,123
   1 AACGTCAATGAATAGATAGATGGCTGCCGCGGCAATCCAAAGTTCCCCGGCTGCTTCCCG
  61 CCACCACCACCTCCACCTCGCTGGCTCATTACCAAAGTTCTTGAAATGATAATTA
 121 CTCCCCATTTCACTAAAACTCCTCAGTCCTCACACAATCCGCCTTCAAACCTCAGCTCTG
                                    181 TTATTCAAGAATCACAAAACCTACATATCAGATCAACAAGTTAATTCCCTTCCCTTTGAA
                      241 CCTTTTTCCTTATCATACTGTTCAACCCTTCACATAAATGTACATCTATTTACAAACACA
     301 CAGTTAATTAAAAGCAAAATATACCTGGAAAGAGATCAAAAATCAATTTACAGCTAAAAC
     ********************
                                                   <<<<<<
 361 TCACCAACCCCTTATCAATAAAATCATCAAAAAACAAATCCTATTTGAAATTCACTTCATT
     <<<<<<<
 421 CAACTAAATTGACTGCATTTTCAGTTCACCCCAAGAACCCCCCAAAACCACCTTCCCCAC
 481 CCACCAATCCAATAAAGAACACACCTTTTGACCTTCAAATACAC
KEYS (in order of precedence):
****** target
>>>>> left primer
```



- I Search Tools:
  - I.I By Ontology.
  - I.2 By Sequence Homology/Similarity (Blast).
  - I.3 By Sequence/Chromosome coordinates (GBrowse).
- 2 Manipulation and Sequence Analysis Tools:
  - 2.1 Translators and Gene Predictors.
  - 2.2 Multiple Sequence Alignment (Clustalw).
  - 2.3 Protein Domain Analysis (InterProScan).
  - 2.4 Signal Peptide Analysis (SignalP).
- 3 Other Tools:
  - 3.1 Linkage Map Viewers (CViewer).
  - 3.2 Primer Design (Primer3).
- 4 Web Pages with Multiple Tools.

4 - Web Pages with Multiple Tools.



Useful bioinformatic web-portals with classical bioinformatic tools on-line:

• EBI (European Bioinformatic Institute): Analysis of sequences.

http://www.ebi.ac.uk/Tools/

• Mobyle (Instituto Pasteur): Phylogenetic analysis.

http://mobyle.pasteur.fr/cgi-bin/portal.py?#welcome

- ExPASy (SwissProt): Analysis of proteins and sequences.
   <a href="http://expasy.org/tools/">http://expasy.org/tools/</a>
- CBS (Center For Biological Sequence Analysis).

http://www.cbs.dtu.dk/biotools/

• Phylemon2: Molecular evolution analysis

http://phylemon.bioinfo.cipf.es/evolutionary.html



### Exercise 2

- I. Select a protein from exercise I part 5, what domains can be found?
- 2. Find the Arabidopsis thaliana best protein match to the protein.
- 3. Find the tomato best protein match to the protein
- 4. What sequences are upstream and downstream of the tomato match from part 2? How many introns does the match have?
- 5. Align all sequences from exercise 1.4 with the Arabidopsis and tomato protein matches.
- 6. Make a phylogenetic tree with the alignment from 5. Which sequences appear to be most closely related?



# Exercise 2 Solutions (cont'd)

# I. Select a protein from exercise I part 5, what domains can be found?

http://www.ebi.ac.uk/interpro/search/sequence-search

#### ADR30037.1

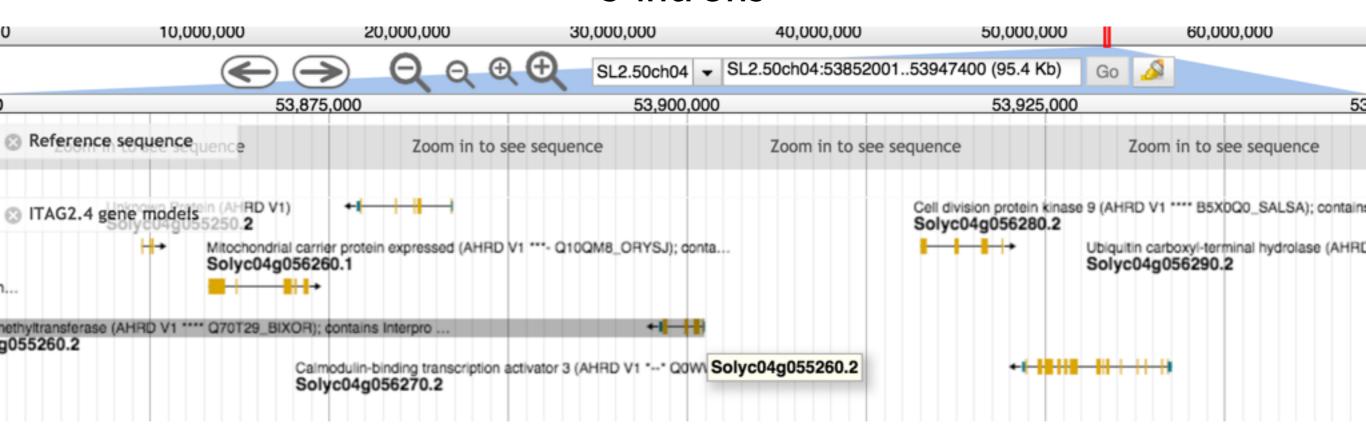




### Exercise 2 Solutions

2. Find the Arabidopsis thaliana best protein match to the protein.

At5g04380 (http://arabidopsis.org/Blast/index.jsp)


3. Find the tomato best protein match to the protein

Solyc04g055260 (http://solgenomics.net/tools/blast/index.pl)



### Exercise 2 Solutions

4.What sequences are upstream and downstream of the tomato match from part 2? How many introns does the match have? 3 introns



https://solgenomics.net/jbrowse\_solgenomics/

## **Exercise 2 Solutions**

# 5.Align all sequences from exercise 1.4 with the Arabidopsis and tomato protein matches.

CLUSTAL O(1.2.1) multiple sequence alignment

| MDMKDVLCMNTGEGESSYLLNSKFTNVTAIKSIPT                          |
|--------------------------------------------------------------|
| MEVKEMLFMNKGDGENSYVKTSGYTQKVAAVTQPV                          |
| MELATAGKVNEVLFMNRGEGESSYAQNSSFTQQVASMAQPA                    |
| MELATAGKVNEVLFMNRGEGESSYAQNSSFTQQVASMAQPA                    |
| MKEVKEALFMNKGEGESSYAQNSSFTQTVTSMTMPV                         |
| MKEVKEALFMNKGEGESSYAQNSSFTQTVTSMTMPV                         |
| MELQEVLHMNGGEGEASYAKNSSFNQLVLAKVKPV                          |
| MSLCLILCRCDCKSEYKVDEERSSKYPFVGALCMNGGDVDNSYTTKSLLQKRVLSITNPI |
| MEVTKVLHMNGGMGDASYAKNSLLQQKVILMTKS1                          |
|                                                              |

\* \*\* \* : \*\* .\* : .

LKRAIESLFKEESPPFEHLLNVADLGCASGSTSNTIMPTVVQTVVNKCRE--LNHKIPEF VYRAAQSLFTGRNSCSYQVLNVADLGCSSGPNTFTVMSTVIESTRDKCSE--LNWQMPEI LENAVETLFSR-DFHL-QALNAADLGCAAGPNTFAVISTIKRMMEKKCRE--LNCQTLEL LENAVETLFSK-DFHLLQALNAVDLGCAAGPNTFAVISTIKRMMEKKCRE--LNCQTLEL LENAVETLFSK-DFHLLQALNAVDLGCAAGPTTFTVISTIKRMMEKKCRE--LNCQTLEL LENAVETLFSK-DFHLLQALNAVDLGCAAGPTTFTVISTIKRMMEKKCRE--LNCQTLEL LEQCVRELLRANLPNINKCIKVADLGCASGPNTLLTVWDTVQSIDKVKQEMKNELERPTI LVKNTEEMLTN--LDFPKCIKVADLGCSSGQNTFLAMSEIVNTINVLCQK--WNQSRPEI TDEAISSLYNN--LSSRETICIADLGCSSGPNTFLSVSQFIQTIDKERKKK-GRHKAPEF

gi|645065978|tpg|DAA64605.1| gi|87887929|dbj|BAE79730.1| gi|145952324|gb|ABP98983.1| gi|9967143|dbj|BAB12278.1| gi|59611829|gb|AAW88351.1| gi|51968288|dbj|BAD42854.1| gi|13365694|dbj|BAB39213.1| At5g04380 Solyc04g055260.2.1

At5g04380

Solyc04g055260.2.1

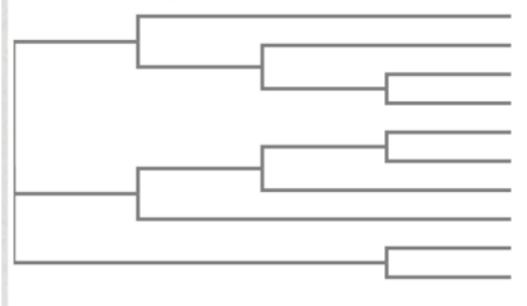
gi|645065978|tpg|DAA64605.1| gi|87887929|dbj|BAE79730.1| gi|145952324|gb|ABP98983.1| gi|9967143|dbj|BAB12278.1| gi|59611829|gb|AAW88351.1| gi|51968288|dbj|BAD42854.1| gi|13365694|dbj|BAB39213.1|

http://www.ebi.ac.uk/Tools/msa/clustalo/



sol genomics network

# Exercise 2 Solutions


# 6. Make a phylogenetic tree with the alignment from 5. Which sequences appear to be most closely related?

#### Phylogenetic Tree

This is a Neighbour-joining tree without distance corrections.

Download Phylogenetic Tree Data

Branch length: 💿 Cladogram 🔵 Real



gi|312964508|gb|ADR30037.1| 0.10726 gi|334351219|sp|A4GE69.1|XMT1\_COFCA 0.00288 gi|33355461|gb|AAQ16154.1| 0.00235 gi|312964510|gb|ADR30038.1| 0.00033 gi|66774630|gb|AAY56106.1| 0 gi|59710568|gb|AAW88761.1| 0 gi|59799613|gb|AAX07284.1| -0.00201 gi|66774632|gb|AAY56107.1| -0.00113 gi|85700271|gb|ABC74575.1| 0.00996 gi|33391746|gb|AAQ16155.1| -0.00203

http://www.ebi.ac.uk/Tools/msa/clustalo/



# When using web tools remember:

I.) Often not all program options are available

2.) Jobs are run on another server, large jobs may be better run locally

### Additional Bioinformatics Classes

- I. Next class will give hands on command line training,
  - Linux Basics Bryan Ellerbrock (6/22)
- 2. Following courses are optional:
  - Intro to commandline tools: Adrian Powell (6/29)
  - Next Generation Sequence Data Surya Saha (7/6)
  - Intro to R Nick Morales (7/13)
- 3. Sign-up for optional courses: email <a href="mailto:srs57@cornell.edu">srs57@cornell.edu</a>
- 4. You will need to have a virtual machine installed prior to next class. Instructions are here:

https://btiplantbioinfocourse.wordpress.com/how-to/installing-the-virtualmachine/

#### PLEASE STOP BY BIOINFORMATICS HOUR WEDNESDAY I - 2 PM IN THE RESOURCE CENTER TO SHOW US YOUR WORKING VIRTUAL MACHINE.

\* You will not be able to participate in the next class exercises without it.\*