This site uses cookies to provide logins and other features. Please accept the use of cookies by clicking Accept.
Tomato locus SELF PRUNING
Locus details | Download GMOD XML | Note to Editors | Annotation guidelines |
[loading edit links...]
|
[loading...]
|
|
![]() ![]() |
Registry name: | None | [Associate registry name] |
![]() ![]() | [Add notes, figures or images] |
Image | Description | Type |
---|
![]() ![]() | [Associate accession] |
Accession name:
Would you Like to specify an allele?
IL6-2 | ![]() | ![]() | ![]() | ![]() | ![]() | |
LA0059 | ![]() | ![]() | ![]() | |||
M82 | ![]() | ![]() | ![]() |
See 87 more accessions
LA0490 | ![]() | ![]() | ![]() | |
LA2461 | ![]() | ![]() | ![]() | |
LA0895 | ![]() | ![]() | ![]() | |
LA3133 | ![]() | ![]() | ||
LA2477 | ![]() | ![]() | ||
LA0154 | ![]() | |||
LA3802 | ![]() |
LA3897 LA3898 LA3899 2-385 2-389 LA0012 LA0020 LA0174 LA0201 LA0273 LA0302 LA0308 LA0336 LA0875 LA0876 LA1097 LA1698 LA1783 LA1784 LA1804 LA1896 LA2350 LA2355 LA2365 LA2372 LA2399 LA2400 LA2458 LA2465 LA2476 LA2486 LA2487 LA2514 LA2515 LA2526 LA2527 LA2531A LA2596 LA2598 LA2600 LA2612 LA2705 LA3037 LA3039 LA3040 LA3041 LA3130 LA3200 LA3212 LA3298 LA3315 LA3354 LA3446 LA3447 LA3449 LA3450 LA3451 LA3501 LA3502 LA3563 LA3630 LA3631 LA3755 LA3800 LA3801 LA3806 LA3822 LA3823 LA3827 LA3839 LA3840 LA3847 LA3848 LA3849 LA4025 LA4026 LA4060 LA4062 LA4287 LA4346
![]() ![]() | [Add new Allele] |
![]() ![]() | [Associate new locus] |
[loading...]
|
![]() ![]() | View SELF PRUNING relationships in the stand-alone network browser |
[loading...] | [Legend] [Levels] |
![]() ![]() |
[loading...]
![]() ![]() |
![]() ![]() |
![]() ![]() | unprocessed genomic sequence region underlying this gene |
>Solyc06g074350.2 SL2.50ch06:45971723..45973983
CACCAAAAAACAACTACAACTCTTTAAGTAGATTTTGTTTTGTTTCTTATAATTAATTAATAATTAACTCTAAATATATATATGGCTTCCAAAATGTGTGAACCCCTTGTGATTGGTAGAGTGATTGGTGAAGTTGTTGATTATTTCTGTCCAAGTGTTAAGATGTCTGTTGTTTATAACAACAACAAACATGTCTATAATGGACATGAATTCTTTCCTTCCTCAGTAACTTCTAAACCTAGGGTTGAAGTTCATGGTGGTGATCTCAGATCCTTCTTCACACTGGTATATATTAATCTTCAACACTTCCAATTTACTCCGTCTGTCTGTCCTAATTTATGTCACACATTTTCTATGATATATAGTTTTAGAAATTATTCAAGACCATAACTTTTTAAAGAAAAAATCATAGACTTTCTTAGTCAACGTCAAATAAATTGAGACGGACAAGATGACATGATTAGTACATTTATCTTCTATTATTGACCTCTCATTTTCTTTTATACATTATTTGACAGATCATGATAGATCCAGATGTTCTTGGTCCTAGTGATCCATATCTCAGGGAACATCTACACTGGTATAGACAACATATGCCTTAAAACTAACTCAGTCAATTTTATCTTCAATTGTTTACTTTGGAAGGGGAAATGACATGATCATTATATCATAGTACAAATTATTATGTAATTTCTGTTCGTCTAAAAAATGTCACTTTAGAAAAAACTGATAATCATATACAATACCACAATAAAGATAGAAGAACATGTACTAATATTGAACTTAAATAATGAGTACTAGGAGTATTATTAATTAACTTTAAAAATGCTAGTCAATATACCTATGTTTATATGTTAAAAAATCCTTTATATTTGGAAACATGAGTACTCCTATACCATACAATGTTGTCGTACAGTTGATTAGACGGGCAAATTAAACAAATGTCCAATAATTGTACTAATTAATAACTACTTGTTCTCTTCATCTATTATTAGTTATTACCAAAAAAAGAGGACTGCAAAATGGTGATATTATTATGTGTAACGGAAAAAAACGTACTCTATTTAATATGATAGAATCAAAGTGACATATTTTGTTCTAGTTAGACAAATAAGTAACTGAAAAGAGGATTTGACCATCTTTACAGGATTGTCACAGACATTCCAGGCACTACAGATTGCTCTTTTGGTATGTATCCTTAACCCATAAATCAAAATAATGTACTTTCTTTTTATTTGCCATTAATATCTCTAGTACAAAAAAGAAATATTATAAAAAAAATTAATTTCAATTTTTATATTATAGGTTTAAGATAATAATATTAAACGATATTTTAGTCTCTACCAAATAGACGAGCAAATTAAAACTAAGAAAGCACTACATGTTTTCTTTATATTATTAGTATAAAAATATATTATAATTTGCCTGGTGGTAATAGGATCAAAGTATTGATTCTTAATTATTATTATATAATTAATAATAATGGTAAACAAAAAGATATAAAGTGCTTACCTCCTAATTCCCTATATGAAAAAATATACTTACTTAATTACTCTTTTTACACGTAAGCATGCATTTAAAAAAATATTAAAAAATTATTCCAGAGGTTATATATAATATGTATGGATAAAAAAAAAATTCACCTATATACATAATAATATAATTTTCGAGTGAATTGACCGCCCTTCAGCATCATTATATAATGTTATCGATCTAGGTCTTTGTGTGAAATTAAAAGTTATTTATACGGTTAGTACGATCGCGTAATAACGAAGGTAAAAATATTTCAGGAAGAGAAGTGGTTGGGTATGAAATGCCAAGGCCAAATATTGGAATCCACAGGTTTGTATTTTTGCTGTTTAAGCAGAAGAAAAGGCAAACAATATCGAGTGCACCAGTGTCCAGAGATCAATTTAGTAGTAGAAAATTTTCAGAAGAAAATGAACTTGGCTCACCAGTTGCTGCTGTTTTCTTCAATTGTCAGAGGGAAACTGCCGCTAGAAGGCGTTGATATATCGACAAATTAAAAGCATCTACAATTATATAATAATTAGTGCGTGGACGGACTACTACTACTATATGCTTTTTTAATATTATATAATTTAATAAGACATGCAGACTTAAATTTTATATTATGTATGTATATGGGGGTTAATGGTTGTTCACCCTCATGACTTAATGCCAATGGCTTAATTATAAGCACAATGTAATGTAATATCATCAATGTTTCACTTAATTAATATAATTCTATGTGTGTTTTC
CACCAAAAAACAACTACAACTCTTTAAGTAGATTTTGTTTTGTTTCTTATAATTAATTAATAATTAACTCTAAATATATATATGGCTTCCAAAATGTGTGAACCCCTTGTGATTGGTAGAGTGATTGGTGAAGTTGTTGATTATTTCTGTCCAAGTGTTAAGATGTCTGTTGTTTATAACAACAACAAACATGTCTATAATGGACATGAATTCTTTCCTTCCTCAGTAACTTCTAAACCTAGGGTTGAAGTTCATGGTGGTGATCTCAGATCCTTCTTCACACTGGTATATATTAATCTTCAACACTTCCAATTTACTCCGTCTGTCTGTCCTAATTTATGTCACACATTTTCTATGATATATAGTTTTAGAAATTATTCAAGACCATAACTTTTTAAAGAAAAAATCATAGACTTTCTTAGTCAACGTCAAATAAATTGAGACGGACAAGATGACATGATTAGTACATTTATCTTCTATTATTGACCTCTCATTTTCTTTTATACATTATTTGACAGATCATGATAGATCCAGATGTTCTTGGTCCTAGTGATCCATATCTCAGGGAACATCTACACTGGTATAGACAACATATGCCTTAAAACTAACTCAGTCAATTTTATCTTCAATTGTTTACTTTGGAAGGGGAAATGACATGATCATTATATCATAGTACAAATTATTATGTAATTTCTGTTCGTCTAAAAAATGTCACTTTAGAAAAAACTGATAATCATATACAATACCACAATAAAGATAGAAGAACATGTACTAATATTGAACTTAAATAATGAGTACTAGGAGTATTATTAATTAACTTTAAAAATGCTAGTCAATATACCTATGTTTATATGTTAAAAAATCCTTTATATTTGGAAACATGAGTACTCCTATACCATACAATGTTGTCGTACAGTTGATTAGACGGGCAAATTAAACAAATGTCCAATAATTGTACTAATTAATAACTACTTGTTCTCTTCATCTATTATTAGTTATTACCAAAAAAAGAGGACTGCAAAATGGTGATATTATTATGTGTAACGGAAAAAAACGTACTCTATTTAATATGATAGAATCAAAGTGACATATTTTGTTCTAGTTAGACAAATAAGTAACTGAAAAGAGGATTTGACCATCTTTACAGGATTGTCACAGACATTCCAGGCACTACAGATTGCTCTTTTGGTATGTATCCTTAACCCATAAATCAAAATAATGTACTTTCTTTTTATTTGCCATTAATATCTCTAGTACAAAAAAGAAATATTATAAAAAAAATTAATTTCAATTTTTATATTATAGGTTTAAGATAATAATATTAAACGATATTTTAGTCTCTACCAAATAGACGAGCAAATTAAAACTAAGAAAGCACTACATGTTTTCTTTATATTATTAGTATAAAAATATATTATAATTTGCCTGGTGGTAATAGGATCAAAGTATTGATTCTTAATTATTATTATATAATTAATAATAATGGTAAACAAAAAGATATAAAGTGCTTACCTCCTAATTCCCTATATGAAAAAATATACTTACTTAATTACTCTTTTTACACGTAAGCATGCATTTAAAAAAATATTAAAAAATTATTCCAGAGGTTATATATAATATGTATGGATAAAAAAAAAATTCACCTATATACATAATAATATAATTTTCGAGTGAATTGACCGCCCTTCAGCATCATTATATAATGTTATCGATCTAGGTCTTTGTGTGAAATTAAAAGTTATTTATACGGTTAGTACGATCGCGTAATAACGAAGGTAAAAATATTTCAGGAAGAGAAGTGGTTGGGTATGAAATGCCAAGGCCAAATATTGGAATCCACAGGTTTGTATTTTTGCTGTTTAAGCAGAAGAAAAGGCAAACAATATCGAGTGCACCAGTGTCCAGAGATCAATTTAGTAGTAGAAAATTTTCAGAAGAAAATGAACTTGGCTCACCAGTTGCTGCTGTTTTCTTCAATTGTCAGAGGGAAACTGCCGCTAGAAGGCGTTGATATATCGACAAATTAAAAGCATCTACAATTATATAATAATTAGTGCGTGGACGGACTACTACTACTATATGCTTTTTTAATATTATATAATTTAATAAGACATGCAGACTTAAATTTTATATTATGTATGTATATGGGGGTTAATGGTTGTTCACCCTCATGACTTAATGCCAATGGCTTAATTATAAGCACAATGTAATGTAATATCATCAATGTTTCACTTAATTAATATAATTCTATGTGTGTTTTC
Download sequence region |
Get flanking sequences on SL2.50ch06
|
![]() ![]() |
![]() ![]() | terms associated with this mRNA |
![]() ![]() | spliced cDNA sequence, including UTRs |
>Solyc06g074350.2.1 self-pruning
CACCAAAAAACAACTACAACTCTTTAAGTAGATTTTGTTTTGTTTCTTATAATTAATTAATAATTAACTCTAAATATATATATGGCTTCCAAAATGTGTGAACCCCTTGTGATTGGTAGAGTGATTGGTGAAGTTGTTGATTATTTCTGTCCAAGTGTTAAGATGTCTGTTGTTTATAACAACAACAAACATGTCTATAATGGACATGAATTCTTTCCTTCCTCAGTAACTTCTAAACCTAGGGTTGAAGTTCATGGTGGTGATCTCAGATCCTTCTTCACACTGATCATGATAGATCCAGATGTTCTTGGTCCTAGTGATCCATATCTCAGGGAACATCTACACTGGATTGTCACAGACATTCCAGGCACTACAGATTGCTCTTTTGGAAGAGAAGTGGTTGGGTATGAAATGCCAAGGCCAAATATTGGAATCCACAGGTTTGTATTTTTGCTGTTTAAGCAGAAGAAAAGGCAAACAATATCGAGTGCACCAGTGTCCAGAGATCAATTTAGTAGTAGAAAATTTTCAGAAGAAAATGAACTTGGCTCACCAGTTGCTGCTGTTTTCTTCAATTGTCAGAGGGAAACTGCCGCTAGAAGGCGTTGATATATCGACAAATTAAAAGCATCTACAATTATATAATAATTAGTGCGTGGACGGACTACTACTACTATATGCTTTTTTAATATTATATAATTTAATAAGACATGCAGACTTAAATTTTATATTATGTATGTATATGGGGGTTAATGGTTGTTCACCCTCATGACTTAATGCCAATGGCTTAATTATAAGCACAATGTAATGTAATATCATCAATGTTTCACTTAATTAATATAATTCTATGTGTGTTTTC
CACCAAAAAACAACTACAACTCTTTAAGTAGATTTTGTTTTGTTTCTTATAATTAATTAATAATTAACTCTAAATATATATATGGCTTCCAAAATGTGTGAACCCCTTGTGATTGGTAGAGTGATTGGTGAAGTTGTTGATTATTTCTGTCCAAGTGTTAAGATGTCTGTTGTTTATAACAACAACAAACATGTCTATAATGGACATGAATTCTTTCCTTCCTCAGTAACTTCTAAACCTAGGGTTGAAGTTCATGGTGGTGATCTCAGATCCTTCTTCACACTGATCATGATAGATCCAGATGTTCTTGGTCCTAGTGATCCATATCTCAGGGAACATCTACACTGGATTGTCACAGACATTCCAGGCACTACAGATTGCTCTTTTGGAAGAGAAGTGGTTGGGTATGAAATGCCAAGGCCAAATATTGGAATCCACAGGTTTGTATTTTTGCTGTTTAAGCAGAAGAAAAGGCAAACAATATCGAGTGCACCAGTGTCCAGAGATCAATTTAGTAGTAGAAAATTTTCAGAAGAAAATGAACTTGGCTCACCAGTTGCTGCTGTTTTCTTCAATTGTCAGAGGGAAACTGCCGCTAGAAGGCGTTGATATATCGACAAATTAAAAGCATCTACAATTATATAATAATTAGTGCGTGGACGGACTACTACTACTATATGCTTTTTTAATATTATATAATTTAATAAGACATGCAGACTTAAATTTTATATTATGTATGTATATGGGGGTTAATGGTTGTTCACCCTCATGACTTAATGCCAATGGCTTAATTATAAGCACAATGTAATGTAATATCATCAATGTTTCACTTAATTAATATAATTCTATGTGTGTTTTC
![]() ![]() | translated polypeptide sequence |
>Solyc06g074350.2.1 self-pruning
MASKMCEPLVIGRVIGEVVDYFCPSVKMSVVYNNNKHVYNGHEFFPSSVTSKPRVEVHGGDLRSFFTLIMIDPDVLGPSDPYLREHLHWIVTDIPGTTDCSFGREVVGYEMPRPNIGIHRFVFLLFKQKKRQTISSAPVSRDQFSSRKFSEENELGSPVAAVFFNCQRETAARRR*
MASKMCEPLVIGRVIGEVVDYFCPSVKMSVVYNNNKHVYNGHEFFPSSVTSKPRVEVHGGDLRSFFTLIMIDPDVLGPSDPYLREHLHWIVTDIPGTTDCSFGREVVGYEMPRPNIGIHRFVFLLFKQKKRQTISSAPVSRDQFSSRKFSEENELGSPVAAVFFNCQRETAARRR*
![]() ![]() |
![]() ![]() | [Associate new unigene] |
Unigene ID:
[loading...]
![]() ![]() | [Associate new genbank sequence] |
U84140 Lycopersicon esculentum self-pruning protein (sp) mRNA, complete cds.
Other genome matches | None |
![]() ![]() | [Associate publication] [Matching publications] |
The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1.
Development (Cambridge, England) (1998)
Show / hide abstract
Show / hide abstract
Vegetative and reproductive phases alternate regularly during sympodial growth in tomato. In wild-type 'indeterminate' plants, inflorescences are separated by three vegetative nodes. In 'determinate' plants homozygous for the recessive allele of the SELF-PRUNING (SP) gene, sympodial segments develop progressively fewer nodes until the shoot is terminated by two consecutive inflorescences. We show here that the SP gene is the tomato ortholog of CENTRORADIALIS and TERMINAL FLOWER1, genes which maintain the indeterminate state of inflorescence meristems in Antirrhinum and Arabidopsis respectively. The sp mutation results in a single amino acid change (P76L), and the mutant phenotype is mimicked by overexpressing the SP antisense RNA. Ectopic and overexpression of the SP and CEN transgenes in tomato rescues the 'indeterminate' phenotype, conditions the replacement of flowers by leaves in the inflorescence and suppresses the transition of the vegetative apex to a reproductive shoot. The SELF-PRUNING gene is expressed in shoot apices and leaves from very early stages, and later in inflorescence and floral primordia as well. This expression pattern is similar to that displayed by the tomato ortholog LEAFY and FLORICAULA. Comparison of the sympodial, day-neutral shoot system of tomato and the monopodial, photoperiod-sensitive systems of Arabidopsis and Antirrhinum suggests that flowering genes that are required for the processing of floral induction signals in Arabidopsis and Antirrhinum are required in tomato to regulate the alternation between vegetative and reproductive cycles in sympodial meristems.
Pnueli, L. Carmel, Goren. Hareven, D. Gutfinger, T. Alvarez, J. Ganal, M. Zamir, D. Lifschitz, E.
Development (Cambridge, England).
1998.
125(11).
1979-89.
Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering.
The Plant cell (2001)
Show / hide abstract
Show / hide abstract
Divergent architecture of shoot models in flowering plants reflects the pattern of production of vegetative and reproductive organs from the apical meristem. The SELF-PRUNING (SP) gene of tomato is a member of a novel CETS family of regulatory genes (CEN, TFL1, and FT) that controls this process. We have identified and describe here several proteins that interact with SP (SIPs) and with its homologs from other species: a NIMA-like kinase (SPAK), a bZIP factor, a novel 10-kD protein, and 14-3-3 isoforms. SPAK, by analogy with Raf1, has two potential binding sites for 14-3-3 proteins, one of which is shared with SP. Surprisingly, overexpression of 14-3-3 proteins partially ameliorates the effect of the sp mutation. Analysis of the binding potential of chosen mutant SP variants, in relation to conformational features known to be conserved in this new family of regulatory proteins, suggests that associations with other proteins are required for the biological function of SP and that ligand binding and protein-protein association domains of SP may be separated. We suggest that CETS genes encode a family of modulator proteins with the potential to interact with a variety of signaling proteins in a manner analogous to that of 14-3-3 proteins.
Pnueli, L. Gutfinger, T. Hareven, D. Ben-Naim, O. Ron, N. Adir, N. Lifschitz, E.
The Plant cell.
2001.
13(12).
2687-702.
The SELF-PRUNING gene family in tomato.
Plant molecular biology (2003)
Show / hide abstract
Show / hide abstract
The SELF PRUNING (SP) gene controls the regularity of the vegetative-reproductive switch along the compound shoot of tomato and thus conditions the 'determinate' (sp/sp) and 'indeterminate' (SP_) growth habits of the plant. SP is a developmental regulator which is homologous to CENTRORADIALIS (CEN) from Antirrhinum and TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) from Arabidopsis. Here we report that SP is a member of a gene family in tomato composed of at least six genes, none of which is represented in the tomato EST collection. Sequence analysis of the SP gene family revealed that its members share homology along their entire coding regions both among themselves and with the six members of the Arabidopsis family. Furthermore, members of the gene family in the two species display a common genomic organization (intron-exon pattern). In tomato, phylogenetically close homologues diverged considerably with respect to their organ expression patterns while SP2I and its closest homologue from Arabidopsis (MFT) exhibited constitutive expression. This research focusing on a plant of sympodial growth habit sets the stage for a functional analysis of this weakly expressed gene family which plays a key role in determining plant architecture.
Carmel, Goren. Liu, YS. Lifschitz, E. Zamir, D.
Plant molecular biology.
2003.
52(6).
1215-22.
Genetic and physiological characterization of tomato cv. Micro-Tom.
Journal of experimental botany (2006)
Show / hide abstract
Show / hide abstract
Based on its compact habit, Micro-Tom, a dwarf cultivar of tomato (Solanum lycopersicum L.), has been proposed as a preferred variety to carry out molecular research in tomato. This cultivar, however, is poorly characterized. It is shown here that Micro-Tom has mutations in the SELF-PRUNING (SP) and DWARF (D) genes. In addition to this, it is also shown that Micro-Tom harbours at least two independently segregating resistance loci to the plant pathogen Cladosporium fulvum. The presence of the self-pruning mutation in Micro-Tom, that generates a determinate phenotype, was confirmed by crossing and sequence analysis. It was also found that Micro-Tom has a mutation in the DWARF gene (d) that leads to mis-splicing and production of at least two shorter mRNAs. The d mutation is predicted to generate truncated DWARF protein. The d sequence defect co-segregates with dark-green and rugose leaves, characteristics of brassinosteroid biosynthesis mutants. Micro-Tom also carries at least another mutation producing internode length reduction that affects plant height but not active gibberellin (GA) levels, which were similar in dwarf and tall Micro-TomxSeverianin segregants. GAs and brassinosteroids act synergistically in Micro-Tom, and the response to GA depends on brassinosteroids because the elongation of internodes was at least six times higher when GA(3) was applied simultaneously with brassinolide. A novel variety, Micro-0 that is fully susceptible to C. fulvum and almost as dwarf as Micro-Tom, has been generated from the cross of Cf0xMicro-Tom. This line represents a valuable resource for future analysis of Cf resistance genes through breeding or transformation.
Martí, E. Gisbert, C. Bishop, GJ. Dixon, MS. García, Martínez.
Journal of experimental botany.
2006.
57(9).
2037-47.
Revisiting the involvement of SELF-PRUNING in the sympodial growth of tomato.
Plant physiology (2008)
Show / hide abstract
Show / hide abstract
Thouet, J. Quinet, M. Ormenese, S. Kinet, JM. Périlleux, C.
Plant physiology.
2008.
148(1).
61-4.
Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics.
BMC genomics (2010)
Show / hide abstract
Show / hide abstract
ABSTRACT: BACKGROUND: The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. RESULTS: To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061 %. CONCLUSION: The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional genomics and molecular breeding. Full-length cDNA sequences and their annotations are provided in the database KaFTom (http://www.pgb.kazusa.or.jp/kaftom/) via the website of the National Bioresource Project Tomato (http://tomato.nbrp.jp).
Aoki, K. Yano, K. Suzuki, A. Kawamura, S. Sakurai, N. Suda, K. Kurabayashi, A. Suzuki, T. Tsugane, T. Watanabe, M. Ooga, K. Torii, M. Narita, T. Shin-I, T. Kohara, Y. Yamamoto, N. Takahashi, H. Watanabe, Y. Egusa, M. Kodama, M. Ichinose, Y. Kikuchi, M. Fukushima, S. Okabe, A. Arie, T. Sato, Y. Yazawa, K. Satoh, S. Omura, T. Ezura, H. Shibata, D.
BMC genomics.
2010.
11(1).
210.
SELF-PRUNING Acts Synergistically with DIAGEOTROPICA to Guide Auxin Responses and Proper Growth Form.
Plant physiology (2019)
Show / hide abstract
Show / hide abstract
The SELF PRUNING (SP) gene is a key regulator of growth habit in tomato (Solanum lycopersicum). It is an ortholog of TERMINAL FLOWER1, a phosphatidylethanolamine-binding protein with antiflorigenic activity in Arabidopsis (Arabidopsis thaliana). A spontaneous loss-of-function mutation (sp) has been bred into several industrial tomato cultivars, as it produces a suite of pleiotropic effects that are favorable for mechanical harvesting, including determinate growth habit, short plant stature, and simultaneous fruit ripening. However, the physiological basis for these phenotypic differences has not been thoroughly explained. Here, we show that the sp mutation alters polar auxin transport as well as auxin responses, such as gravitropic curvature and elongation of excised hypocotyl segments. We also demonstrate that free auxin levels and auxin-regulated gene expression patterns are altered in sp mutants. Furthermore, diageotropica, a mutation in a gene encoding a cyclophilin A protein, appears to confer epistatic effects with sp Our results indicate that SP affects the tomato growth habit at least in part by influencing auxin transport and responsiveness. These findings suggest potential novel targets that could be manipulated for controlling plant growth habit and improving productivity.
Silva, WB. Vicente, MH. Robledo, JM. Reartes, DS. Ferrari, RC. Bianchetti, R. Araújo, WL. Freschi, L. Peres, LEP. Zsögön, A.
Plant physiology.
2019.
176(4).
2904-2916.
De novo domestication of wild tomato using genome editing.
Nature biotechnology (2018)
Show / hide abstract
Show / hide abstract
Breeding of crops over millennia for yield and productivity has led to reduced genetic diversity. As a result, beneficial traits of wild species, such as disease resistance and stress tolerance, have been lost. We devised a CRISPR-Cas9 genome engineering strategy to combine agronomically desirable traits with useful traits present in wild lines. We report that editing of six loci that are important for yield and productivity in present-day tomato crop lines enabled de novo domestication of wild Solanum pimpinellifolium. Engineered S. pimpinellifolium morphology was altered, together with the size, number and nutritional value of the fruits. Compared with the wild parent, our engineered lines have a threefold increase in fruit size and a tenfold increase in fruit number. Notably, fruit lycopene accumulation is improved by 500% compared with the widely cultivated S. lycopersicum. Our results pave the way for molecular breeding programs to exploit the genetic diversity present in wild plants.
Zsögön, A. Čermák, T. Naves, ER. Notini, MM. Edel, KH. Weinl, S. Freschi, L. Voytas, DF. Kudla, J. Peres, LEP.
Nature biotechnology.
2018.
().
.
SELF PRUNING 3C is a flowering repressor that modulates seed germination, root architecture, and drought responses.
Journal of experimental botany (2022)
Show / hide abstract
Show / hide abstract
Allelic variation in the CETS (CENTRORADIALIS, TERMINAL FLOWER 1, SELF PRUNING) gene family controls agronomically important traits in many crops. CETS genes encode phosphatidylethanolamine-binding proteins that have a central role in the timing of flowering as florigenic and anti-florigenic signals. The great expansion of CETS genes in many species suggests that the functions of this family go beyond flowering induction and repression. Here, we characterized the tomato SELF PRUNING 3C (SP3C) gene, and show that besides acting as a flowering repressor it also regulates seed germination and modulates root architecture. We show that loss of SP3C function in CRISPR/Cas9-generated mutant lines increases root length and reduces root side branching relative to the wild type. Higher SP3C expression in transgenic lines promotes the opposite effects in roots, represses seed germination, and also improves tolerance to water stress in seedlings. These discoveries provide new insights into the role of SP paralogs in agronomically relevant traits, and support future exploration of the involvement of CETS genes in abiotic stress responses.
Moreira, JDR. Quiñones, A. Lira, BS. Robledo, JM. Curtin, SJ. Vicente, MH. Ribeiro, DM. Ryngajllo, M. Jiménez-Gómez, JM. Peres, LEP. Rossi, M. Zsögön, A.
Journal of experimental botany.
2022.
73(18).
6226-6240.
![]() ![]() | [Add ontology annotations] |
[loading...]
![]() ![]() |
- Genomic details
User comments |
Please wait, checking for comments. (If comments do not show up, access them here)
Your Lists
Public Lists
List Contents
List Validation Report: Failed
Elements not found:
Optional: Add Missing Accessions to A List
Mismatched case
Click the Adjust Case button to align the case in the list with what is in the database.
Multiple mismatched case
Items listed here have mulitple case mismatches and must be fixed manually. If accessions need to be merged, contact the database directly.
List elements matching a synonym
Multiple synonym matches
Fuzzy Search Results
Synonym Search Results
Available Seedlots
Your Datasets
Public Datasets
Dataset Contents
Dataset Validation Failed
Elements not found:
Your Calendar
Having trouble viewing events on the calendar?
Are you associated with the breeding program you are interested in viewing?
Add New Event
Event Info
Attribute | Value |
---|---|
Project Name: | |
Start Date: | |
End Date: | |
Event Type: | |
Event Description: | |
Event Web URL: |
Edit Event
Login
Forgot Username
If you've forgotten your username, enter your email address below. An email will be sent with any account username(s) associated with your email address.
Reset Password
To reset your password, please enter your email address. A link will be sent to that address with a link that will enable you to reset your password.
Create New User
Working
