This site uses cookies to provide logins and other features. Please accept the use of cookies by clicking Accept.
Tomato locus Coronatine-insensitive 1
Locus details | Download GMOD XML | Note to Editors | Annotation guidelines |
[loading edit links...]
|
[loading...]
|
|
![]() ![]() |
Registry name: | None | [Associate registry name] |
![]() ![]() | [Add notes, figures or images] |
Success
The display image was set successfully.
Image | Description | Type |
---|
![]() ![]() | [Associate accession] |
Alleles (0) | None | [Add new Allele] |
![]() ![]() | [Associate new locus] |
[loading...]
|
Associated loci - graphical view | None |
![]() ![]() |
[loading...]
![]() ![]() |
![]() ![]() |
![]() ![]() | unprocessed genomic sequence region underlying this gene |
>Solyc05g052620.2 SL2.50ch05:62828195..62822121 (sequence from reverse strand)
CCAAAAAAAAATAAAAAAAAAATAAAAAATAAAATACTATCATACTGTCGCCGTCCGATCTTCTTTCTCTCTCTACATCTCTCCGTTCAATCTCTCTCCTCCATCTTCTTCAACTGTAACCTCTCTTCCATTATCAGTGTCAAGTTGTTGAAGTTTTGGTCATGGTCATGGTGTAATTTGTTGTTAGTATTTTGAAGTATTTGTGTTTTTGATTTGGTTTTGGTTTTAATGGAGGAACGGAACTCAACGAGATTGAGTAGCTCAACAAACGATACAGTATGGGAGTGTGTGATTCCGTATATACAGGAATCGCGTGATAGAGACGCGGTATCGTTGGTATGTAAGAGGTGGTGGCAGATCGATGCGATTACTAGAAAGCATATAACTATGGCGTTGTGTTATACAGCGAAACCAGAGCAGTTATCTAGAAGGTTTCCACATCTTGAATCGGTTAAACTGAAAGGGAAACCAAGAGCTGCTATGTTTAATTTGATACCGGAAGATTGGGGAGGATATGTTACACCTTGGGTTATGGAGATAACTAAGTCGTTTAGTAAATTGAAAGCACTTCATTTTCGTAGAATGATTGTTAGAGATTCGGATCTCGAATTACTTGCGAATCGTCGTGGAAGAGTTCTTCAAGTTTTGAAGCTGGATAAGTGTTCTGGATTTTCTACTGATGGTCTTCTGCATATTTCTCGTTCCTGCAAGTATGTATTTATTTCTATTGCAAGTTTTAGCTCTTTTCAGTTTCGTTTTTTTTTTGAGTTTCATATTGTTATTCACTTTAATTAGCTTATTGTCTATGATAATTTTCTGAATTAAAGATCCCTAAGGGATGATTGATTGTTTGAGCCACATGAGGTCTGAGTTCTTGTTGGATGGTCCAGGACTTTTACTGACGGCTTCAAAAATTATGGGGGTCATACTATAGCATTTATTGAAACTTTGGTGATATTTTAAGCGCCATATCGGAATTTTTGACTTATATAGCTTGTTAACTACATTTTCCCCTGCTTAGTATAAGCTCATTTGCTATGTTAACGTGGCAGCTGTGCTACTGGGCTGCAGTAGGTTCAAAAGCTATCATTTTTATCAAAAGAAAAGAAAAGAACTGAAGCTATCCTGTATTATCCATTTCTTTGAGACGTGTCTTGAACTTATTGCTTCTATTTCTAAAAAAAAAGGTGTTATGTTTTCTGAGATTTCATTGCTATGCAGTGCTCTATTACTGTGGCTTAAAAAATTTATATTGTCATGTTTGCTTTTAACTATTGTAGTTTTGAATGTTTGTGGCGGTTTGAGTTGTCAAGGCTATTGGTAATTCTAGTGAAATTTCTTCTCATTCTGATTTGTTCGATTTTTTTTTCTTGGGGGGTGTAGATTACCACATAAGTTTGAGGTTTATTGTTTCCCCTCATGAGCAAGTATTTGGGATTGAGCTTGACCTAAGATCCTTTTTACATAAACTTTCACTGTTGGTTGCACATTATATTTAATGGAGACATTTGGCCAACAACTTGGGTGATTCTGACAATTGTATGAGGTATAGCATAACTTGTTTCAACAGTTTTTTTTCTTGATATTCATGAGTACTAATGCTTTTATAATTTGCAAGTATTGATTGAGGCAATATGTGGATTTGATGGATGTCATCTTCCTCCTTTTAGTGGAAATTATTTTCCTCGGAGAAACATTTTCTATAATTTAATAATCTAATGAAAATGTTTCCACACCGTGTTCTTTTGAAGTGGAGACGATATGTTGAGACTAAGTGCCCGTTTGGATTAAGCTTATTTTTAGGTGTTTTTGATTTTTAAGCATTTTTTTTTTAATTTTGAAGGTGTTTGGAAAGGTTAGACAGTATTTTTAAGCTCTTACTTTTAGGCTAAAAAAGTTTAAACATAAGCCAAAAGTAGAGTATCATCATCTACTAATGACTTTGCTTTGGACTTATACGTTGCTTGTTATATGCCCATCCAAACAGGACCTAAAAGTACAGTTACTATCCCCTTTTGGGCAAAGATTTTTTTTTCCAGGGAACAGTTTTTTGTTCAAGGTACCAATGTTGAGAATGTTTCGGAAAAATATTTTCCACTGCCAAAAATTCAGGGATTTGTAGTTGACAAAAAGCTATTGATATACACAGTGCAGCAACTAAGTCCTATTCTTTTCTTGATCCCCCTTGCAGTTAATGTTTTATACGTTGCCTAGAGCTATGCAACTCAAGTAATTGTTTTGAGGTTGAGAGTAACTGTTAGGTGATGGACTCCATGGTTTACGAATATCTGATTCCTAAAATTGTGTCAGTAGAAGAAATGGTTTCTTCATCTGTCTATAAGCATTAGTGAAGATCAGAGTATCCTAGAGCTGTAGATTTGTGTTTTATGAGAGGTACTTATTTAACTTCACTGTCAGAGCAGCTGCATAAATAAGAGTATGAGCACATGTCTAACAAAAAAAATCTGCTCTCTCTAGAATAGACACACTTGATCATGCAGTTTTTGTCATAAATCATGTGTATGTTGTATTTAATTGGAATATTAGCACTCTTTAAGGTGGAGAACAAGTGTCTAGTCCTTAATCTCTTGTCCCAAATCAATCAACTATCAGATATTTTTATGTATTTAATCCTGTGGCTTTTAAATTTAATCAATTGATACCGTTTTGGTTTATTAACCTGTATTCTTATAATCATGAAATTCTCGAGGGTTAATGGCGCACAGTCTGAAACCCTGTGGATAATGAGCCTGCCCTTTAATTCTTCTCCAGTTAAATACTAAGCTTTTGTCTACGCTAGGGCTCAAACCCAGGACATGCACCTAAACCACACAACTAGCGCTGCACTTTTACCATTAGACCAAAGCCCCGTAGACAATCCATTTGGTTTTAGTTTATAAGGTGCCTACTACTAGTGTCTAAGCCGTTTGTCCATGAATGATTTTTCACTTTAATTCAAAATCCGTGTAGAGGTTAGAAAATTCCAAATCCAACTTGTAGTTAGATTCCATACTTAAAGGTGCTCCAAACCTGTTTTCCAATTCAATCCTTATAAGTTCCAAATAAAGTGGAAAACATTTGGAATCCATGGCCATGCCTACTTAAATTTCAACCATTACAGTCAACATATCACTCTAAGAATTTGTGAAATTGATCATTAGAGTCTACTTAGCTCACCTAAAGTAGGACACAAGGGGTACTAAGCATGTTATCCTCTAACGGATAGACGTGTACACGTGTTCACTAGATGTCAGCTTGTAAGGTGGAGACAACTGGTAATTATTAAATATGGTTGGAGACAACTGGTCAGATGTCACAGGTCATGCTGAAAGGTAAAGCTGATGAATGTGAAAAAAGTTGCCTGTTTTTGTCTTGTAGGATGGTCAAGTGATCTCAATGTTATTCTGGTGAAGCTGTAGGCCTAACTTAATTAATTGTCCTATGGTGACTTTGCCATTACCATTGCAGTGTAGTGTGTGATGAACCTATATTATTGTTTAGTTGATTGGAAGTTTGTCTTGATAATTGAGCTTGATTGATGTTGAAGTTGTTACGCTGAACAATTTCTTATATGGGAATCATATCACATGATAGGGTCTGAAAAAGTCAATTCTTCTGTGCATTATTTATAATATGTTAGACATTTTTTAATCATTTGCACAACTTGCTATGTTTTTGTGTTTTACTAAGTTATCTTTTTTGGGAAGTTTTAATACAATTGAGTAGTCGATTGAATTCTGTTGCCTGTTTTGTCTCAATGGGTTCTCATGTAGTCTGTGTCCTGCAGGAACTTAAGAACTTTGTTAATGGAAGAGAGTTATATAATTGAGAAAGATGGAGAATGGGCACATGAACTAGCATTGAACAACACTGTTCTTGAGAATTTGAACTTTTACATGACAGATCTTCTGCAAGTTAGGGCTGAAGATCTTGAATTGATAGCAAGAAATTGTAAATCTCTAGTCTCTATGAAAATTAGCGAGTGTGAAATTACGAATCTTCTTGGCTTCTTTAGAGCTGCGGCTGCATTGGAGGAGTTTGGTGGTGGCGCATTTAATGACCAACCAGAACTTGTTGTTGAAAATGGCTATAATGAGCATTCCGGAAAATATGCCGCACTAGTCTTCCCTCCAAGATTATGTCAATTGGGCTTGACATACTTAGGGAGAAATGAGATGTCCATTCTCTTTCCTATTGCGTCTCGTCTGAGGAAATTGGATCTTCTTTATGCACTTCTTGACACAGCAGCCCACTGTTTCTTACTGCAAAGGTGTCCCAACTTGGAAATTCTTGAGGTTAAGTCTCGGAAGCTTTTCTCACCCTCTTTTCTTTATGCCAATATCAATTTTATATTTAACGGGCTCACTTATATTGGTGCATAACACCAACACTCACACTGATTTTGTTGTGATTGCACCACTTTGATATCAGAAATTTAGGGTTAATGAAATTTACAGTTAGAAGTCCCACATCAGTGTTGGGATGGGTAATTTCTTTATCATAGTGTCAGAGCCAAGCCCATCCCAATTCTTTGTTCACCGCTGTTGGACCCCCATATTATAGAGTCCATGCTCCAGTTAACTAGGTCTGGACATGCTTGGGAGTGTTAGAAGTCCCACATCAAGTAGTTGGATAGGTAATTTGTCTGGGCAATTCTCCCCCGAGTTAGCTTTTGCGGATGAGTCAGGCTCAATTTCCATTTCTTATCATTCATTAACAAAAAAATATTTTTCTGTGGAACATGTGTCAAAGTTTTTATGCTTGGCAAGCTGTATTTTTAAACCTTGTATAATTTGATATATACCCTAACTTGATACTTCAACGCATCACATGGCTGTTTCTATAGAGAGCATTCTCTCCATCTGAATGATACCACTCCAGAATTTGGAGTGAAAAGAAGACTAGTAGATGAGTGGAAAAGATTTCTCTGAAGTTTATAACCTAATTCAGTTTTCTTTCTGTTATCATGTTTGAAACAGACTAGGAATGTTGTTGGGGATAGAGGATTGGAAGTGCTTGGCCAGTACTGTAAGAGGTTAAAGCGGCTCAGGATTGAGAGAGGAGCTGATGATCAGGAGATGGAGGATGAAGAAGGTGCGGTTACACACAGAGGATTGATTGATTTGGCAAAGGGATGTCTTGAACTAGAATACATGGCTGTTTATGTGTCAGATATTACTAATGAAGCTTTGGAAGTTATTGGTACATATCTGAAAAATCTGAGTGATTTTCGGCTGGTTTTGCTTGACAGAGAAGAAAGAATAACAGATCTGCCACTTGATAATGGTGTGCGTGCTTTACTAAGAGGTTGCCATAATCTTAGAAGATTTGCCCTCTATGTCCGGCCTGGGGGCCTTACTGATGTAGGTCTCAGTTATGTCGGGCAATACAGCCCAAACGTGAGATGGATGCTTCTGGGATACGTTGGGGAATCCGATCATGGCCTTCTGGAGTTCTCTAAAGGATGTCCGAGCCTGCAAAAGCTAGAAGTGAGAGGCTGCTGTTTCAGTGAACGTGCATTAGCCTTGGCTACCTTGCAGCTAAAATCGTTAAGGTATCTATGGGTACAAGGATACAGGGCATCTTCAGCTGGTCGTGATCTCTTAGCGATGGCTCGCCCATTCTGGAATATTGAATTGATTCCTGCAAGACGAGTTATTGCCAACGATGGAAATAATGCAGAAACTGTAGTCTCGGAGCATCCAGCCCATATACTTGCCTACTATTCTCTTGCCGGACAAAGAACAGATTTTCCAGACACTGTCAAGCCTTTGGACCCAACTTACCTTCTCGCTGAATAGGTTTGTAAATATAACTTTTCCTTGAGTGAAGTTGTTCGAGGTCTATTTGCTTCCTTTTTAGGTGTCTTGTCCATATGTATGCCTCTTCTTTTCCTCCCCTTTTTCCTTGATGAGAGTTTTTTTTCCACATTGATTTTGATCTTCTCTTTTAGACATGCATTCTGTAATAAATTTGCTTTCCTTGGGTTATCTGTAATCTAACATTTGGTGATCTACGTTCCTAATCCCCCCTGATCTCATCTTCTTCTGTGCTTTGGGTTAAACTAAACATTTG
CCAAAAAAAAATAAAAAAAAAATAAAAAATAAAATACTATCATACTGTCGCCGTCCGATCTTCTTTCTCTCTCTACATCTCTCCGTTCAATCTCTCTCCTCCATCTTCTTCAACTGTAACCTCTCTTCCATTATCAGTGTCAAGTTGTTGAAGTTTTGGTCATGGTCATGGTGTAATTTGTTGTTAGTATTTTGAAGTATTTGTGTTTTTGATTTGGTTTTGGTTTTAATGGAGGAACGGAACTCAACGAGATTGAGTAGCTCAACAAACGATACAGTATGGGAGTGTGTGATTCCGTATATACAGGAATCGCGTGATAGAGACGCGGTATCGTTGGTATGTAAGAGGTGGTGGCAGATCGATGCGATTACTAGAAAGCATATAACTATGGCGTTGTGTTATACAGCGAAACCAGAGCAGTTATCTAGAAGGTTTCCACATCTTGAATCGGTTAAACTGAAAGGGAAACCAAGAGCTGCTATGTTTAATTTGATACCGGAAGATTGGGGAGGATATGTTACACCTTGGGTTATGGAGATAACTAAGTCGTTTAGTAAATTGAAAGCACTTCATTTTCGTAGAATGATTGTTAGAGATTCGGATCTCGAATTACTTGCGAATCGTCGTGGAAGAGTTCTTCAAGTTTTGAAGCTGGATAAGTGTTCTGGATTTTCTACTGATGGTCTTCTGCATATTTCTCGTTCCTGCAAGTATGTATTTATTTCTATTGCAAGTTTTAGCTCTTTTCAGTTTCGTTTTTTTTTTGAGTTTCATATTGTTATTCACTTTAATTAGCTTATTGTCTATGATAATTTTCTGAATTAAAGATCCCTAAGGGATGATTGATTGTTTGAGCCACATGAGGTCTGAGTTCTTGTTGGATGGTCCAGGACTTTTACTGACGGCTTCAAAAATTATGGGGGTCATACTATAGCATTTATTGAAACTTTGGTGATATTTTAAGCGCCATATCGGAATTTTTGACTTATATAGCTTGTTAACTACATTTTCCCCTGCTTAGTATAAGCTCATTTGCTATGTTAACGTGGCAGCTGTGCTACTGGGCTGCAGTAGGTTCAAAAGCTATCATTTTTATCAAAAGAAAAGAAAAGAACTGAAGCTATCCTGTATTATCCATTTCTTTGAGACGTGTCTTGAACTTATTGCTTCTATTTCTAAAAAAAAAGGTGTTATGTTTTCTGAGATTTCATTGCTATGCAGTGCTCTATTACTGTGGCTTAAAAAATTTATATTGTCATGTTTGCTTTTAACTATTGTAGTTTTGAATGTTTGTGGCGGTTTGAGTTGTCAAGGCTATTGGTAATTCTAGTGAAATTTCTTCTCATTCTGATTTGTTCGATTTTTTTTTCTTGGGGGGTGTAGATTACCACATAAGTTTGAGGTTTATTGTTTCCCCTCATGAGCAAGTATTTGGGATTGAGCTTGACCTAAGATCCTTTTTACATAAACTTTCACTGTTGGTTGCACATTATATTTAATGGAGACATTTGGCCAACAACTTGGGTGATTCTGACAATTGTATGAGGTATAGCATAACTTGTTTCAACAGTTTTTTTTCTTGATATTCATGAGTACTAATGCTTTTATAATTTGCAAGTATTGATTGAGGCAATATGTGGATTTGATGGATGTCATCTTCCTCCTTTTAGTGGAAATTATTTTCCTCGGAGAAACATTTTCTATAATTTAATAATCTAATGAAAATGTTTCCACACCGTGTTCTTTTGAAGTGGAGACGATATGTTGAGACTAAGTGCCCGTTTGGATTAAGCTTATTTTTAGGTGTTTTTGATTTTTAAGCATTTTTTTTTTAATTTTGAAGGTGTTTGGAAAGGTTAGACAGTATTTTTAAGCTCTTACTTTTAGGCTAAAAAAGTTTAAACATAAGCCAAAAGTAGAGTATCATCATCTACTAATGACTTTGCTTTGGACTTATACGTTGCTTGTTATATGCCCATCCAAACAGGACCTAAAAGTACAGTTACTATCCCCTTTTGGGCAAAGATTTTTTTTTCCAGGGAACAGTTTTTTGTTCAAGGTACCAATGTTGAGAATGTTTCGGAAAAATATTTTCCACTGCCAAAAATTCAGGGATTTGTAGTTGACAAAAAGCTATTGATATACACAGTGCAGCAACTAAGTCCTATTCTTTTCTTGATCCCCCTTGCAGTTAATGTTTTATACGTTGCCTAGAGCTATGCAACTCAAGTAATTGTTTTGAGGTTGAGAGTAACTGTTAGGTGATGGACTCCATGGTTTACGAATATCTGATTCCTAAAATTGTGTCAGTAGAAGAAATGGTTTCTTCATCTGTCTATAAGCATTAGTGAAGATCAGAGTATCCTAGAGCTGTAGATTTGTGTTTTATGAGAGGTACTTATTTAACTTCACTGTCAGAGCAGCTGCATAAATAAGAGTATGAGCACATGTCTAACAAAAAAAATCTGCTCTCTCTAGAATAGACACACTTGATCATGCAGTTTTTGTCATAAATCATGTGTATGTTGTATTTAATTGGAATATTAGCACTCTTTAAGGTGGAGAACAAGTGTCTAGTCCTTAATCTCTTGTCCCAAATCAATCAACTATCAGATATTTTTATGTATTTAATCCTGTGGCTTTTAAATTTAATCAATTGATACCGTTTTGGTTTATTAACCTGTATTCTTATAATCATGAAATTCTCGAGGGTTAATGGCGCACAGTCTGAAACCCTGTGGATAATGAGCCTGCCCTTTAATTCTTCTCCAGTTAAATACTAAGCTTTTGTCTACGCTAGGGCTCAAACCCAGGACATGCACCTAAACCACACAACTAGCGCTGCACTTTTACCATTAGACCAAAGCCCCGTAGACAATCCATTTGGTTTTAGTTTATAAGGTGCCTACTACTAGTGTCTAAGCCGTTTGTCCATGAATGATTTTTCACTTTAATTCAAAATCCGTGTAGAGGTTAGAAAATTCCAAATCCAACTTGTAGTTAGATTCCATACTTAAAGGTGCTCCAAACCTGTTTTCCAATTCAATCCTTATAAGTTCCAAATAAAGTGGAAAACATTTGGAATCCATGGCCATGCCTACTTAAATTTCAACCATTACAGTCAACATATCACTCTAAGAATTTGTGAAATTGATCATTAGAGTCTACTTAGCTCACCTAAAGTAGGACACAAGGGGTACTAAGCATGTTATCCTCTAACGGATAGACGTGTACACGTGTTCACTAGATGTCAGCTTGTAAGGTGGAGACAACTGGTAATTATTAAATATGGTTGGAGACAACTGGTCAGATGTCACAGGTCATGCTGAAAGGTAAAGCTGATGAATGTGAAAAAAGTTGCCTGTTTTTGTCTTGTAGGATGGTCAAGTGATCTCAATGTTATTCTGGTGAAGCTGTAGGCCTAACTTAATTAATTGTCCTATGGTGACTTTGCCATTACCATTGCAGTGTAGTGTGTGATGAACCTATATTATTGTTTAGTTGATTGGAAGTTTGTCTTGATAATTGAGCTTGATTGATGTTGAAGTTGTTACGCTGAACAATTTCTTATATGGGAATCATATCACATGATAGGGTCTGAAAAAGTCAATTCTTCTGTGCATTATTTATAATATGTTAGACATTTTTTAATCATTTGCACAACTTGCTATGTTTTTGTGTTTTACTAAGTTATCTTTTTTGGGAAGTTTTAATACAATTGAGTAGTCGATTGAATTCTGTTGCCTGTTTTGTCTCAATGGGTTCTCATGTAGTCTGTGTCCTGCAGGAACTTAAGAACTTTGTTAATGGAAGAGAGTTATATAATTGAGAAAGATGGAGAATGGGCACATGAACTAGCATTGAACAACACTGTTCTTGAGAATTTGAACTTTTACATGACAGATCTTCTGCAAGTTAGGGCTGAAGATCTTGAATTGATAGCAAGAAATTGTAAATCTCTAGTCTCTATGAAAATTAGCGAGTGTGAAATTACGAATCTTCTTGGCTTCTTTAGAGCTGCGGCTGCATTGGAGGAGTTTGGTGGTGGCGCATTTAATGACCAACCAGAACTTGTTGTTGAAAATGGCTATAATGAGCATTCCGGAAAATATGCCGCACTAGTCTTCCCTCCAAGATTATGTCAATTGGGCTTGACATACTTAGGGAGAAATGAGATGTCCATTCTCTTTCCTATTGCGTCTCGTCTGAGGAAATTGGATCTTCTTTATGCACTTCTTGACACAGCAGCCCACTGTTTCTTACTGCAAAGGTGTCCCAACTTGGAAATTCTTGAGGTTAAGTCTCGGAAGCTTTTCTCACCCTCTTTTCTTTATGCCAATATCAATTTTATATTTAACGGGCTCACTTATATTGGTGCATAACACCAACACTCACACTGATTTTGTTGTGATTGCACCACTTTGATATCAGAAATTTAGGGTTAATGAAATTTACAGTTAGAAGTCCCACATCAGTGTTGGGATGGGTAATTTCTTTATCATAGTGTCAGAGCCAAGCCCATCCCAATTCTTTGTTCACCGCTGTTGGACCCCCATATTATAGAGTCCATGCTCCAGTTAACTAGGTCTGGACATGCTTGGGAGTGTTAGAAGTCCCACATCAAGTAGTTGGATAGGTAATTTGTCTGGGCAATTCTCCCCCGAGTTAGCTTTTGCGGATGAGTCAGGCTCAATTTCCATTTCTTATCATTCATTAACAAAAAAATATTTTTCTGTGGAACATGTGTCAAAGTTTTTATGCTTGGCAAGCTGTATTTTTAAACCTTGTATAATTTGATATATACCCTAACTTGATACTTCAACGCATCACATGGCTGTTTCTATAGAGAGCATTCTCTCCATCTGAATGATACCACTCCAGAATTTGGAGTGAAAAGAAGACTAGTAGATGAGTGGAAAAGATTTCTCTGAAGTTTATAACCTAATTCAGTTTTCTTTCTGTTATCATGTTTGAAACAGACTAGGAATGTTGTTGGGGATAGAGGATTGGAAGTGCTTGGCCAGTACTGTAAGAGGTTAAAGCGGCTCAGGATTGAGAGAGGAGCTGATGATCAGGAGATGGAGGATGAAGAAGGTGCGGTTACACACAGAGGATTGATTGATTTGGCAAAGGGATGTCTTGAACTAGAATACATGGCTGTTTATGTGTCAGATATTACTAATGAAGCTTTGGAAGTTATTGGTACATATCTGAAAAATCTGAGTGATTTTCGGCTGGTTTTGCTTGACAGAGAAGAAAGAATAACAGATCTGCCACTTGATAATGGTGTGCGTGCTTTACTAAGAGGTTGCCATAATCTTAGAAGATTTGCCCTCTATGTCCGGCCTGGGGGCCTTACTGATGTAGGTCTCAGTTATGTCGGGCAATACAGCCCAAACGTGAGATGGATGCTTCTGGGATACGTTGGGGAATCCGATCATGGCCTTCTGGAGTTCTCTAAAGGATGTCCGAGCCTGCAAAAGCTAGAAGTGAGAGGCTGCTGTTTCAGTGAACGTGCATTAGCCTTGGCTACCTTGCAGCTAAAATCGTTAAGGTATCTATGGGTACAAGGATACAGGGCATCTTCAGCTGGTCGTGATCTCTTAGCGATGGCTCGCCCATTCTGGAATATTGAATTGATTCCTGCAAGACGAGTTATTGCCAACGATGGAAATAATGCAGAAACTGTAGTCTCGGAGCATCCAGCCCATATACTTGCCTACTATTCTCTTGCCGGACAAAGAACAGATTTTCCAGACACTGTCAAGCCTTTGGACCCAACTTACCTTCTCGCTGAATAGGTTTGTAAATATAACTTTTCCTTGAGTGAAGTTGTTCGAGGTCTATTTGCTTCCTTTTTAGGTGTCTTGTCCATATGTATGCCTCTTCTTTTCCTCCCCTTTTTCCTTGATGAGAGTTTTTTTTCCACATTGATTTTGATCTTCTCTTTTAGACATGCATTCTGTAATAAATTTGCTTTCCTTGGGTTATCTGTAATCTAACATTTGGTGATCTACGTTCCTAATCCCCCCTGATCTCATCTTCTTCTGTGCTTTGGGTTAAACTAAACATTTG
Download sequence region |
Get flanking sequences on SL2.50ch05
|
![]() ![]() |
![]() ![]() | terms associated with this mRNA |
![]() ![]() | spliced cDNA sequence, including UTRs |
>Solyc05g052620.2.1 Coronatine-insensitive 1 (Fragment) (AHRD V1 *--- Q5VJQ1_TOBAC)
CCAAAAAAAAATAAAAAAAAAATAAAAAATAAAATACTATCATACTGTCGCCGTCCGATCTTCTTTCTCTCTCTACATCTCTCCGTTCAATCTCTCTCCTCCATCTTCTTCAACTGTAACCTCTCTTCCATTATCAGTGTCAAGTTGTTGAAGTTTTGGTCATGGTCATGGTGTAATTTGTTGTTAGTATTTTGAAGTATTTGTGTTTTTGATTTGGTTTTGGTTTTAATGGAGGAACGGAACTCAACGAGATTGAGTAGCTCAACAAACGATACAGTATGGGAGTGTGTGATTCCGTATATACAGGAATCGCGTGATAGAGACGCGGTATCGTTGGTATGTAAGAGGTGGTGGCAGATCGATGCGATTACTAGAAAGCATATAACTATGGCGTTGTGTTATACAGCGAAACCAGAGCAGTTATCTAGAAGGTTTCCACATCTTGAATCGGTTAAACTGAAAGGGAAACCAAGAGCTGCTATGTTTAATTTGATACCGGAAGATTGGGGAGGATATGTTACACCTTGGGTTATGGAGATAACTAAGTCGTTTAGTAAATTGAAAGCACTTCATTTTCGTAGAATGATTGTTAGAGATTCGGATCTCGAATTACTTGCGAATCGTCGTGGAAGAGTTCTTCAAGTTTTGAAGCTGGATAAGTGTTCTGGATTTTCTACTGATGGTCTTCTGCATATTTCTCGTTCCTGCAAGAACTTAAGAACTTTGTTAATGGAAGAGAGTTATATAATTGAGAAAGATGGAGAATGGGCACATGAACTAGCATTGAACAACACTGTTCTTGAGAATTTGAACTTTTACATGACAGATCTTCTGCAAGTTAGGGCTGAAGATCTTGAATTGATAGCAAGAAATTGTAAATCTCTAGTCTCTATGAAAATTAGCGAGTGTGAAATTACGAATCTTCTTGGCTTCTTTAGAGCTGCGGCTGCATTGGAGGAGTTTGGTGGTGGCGCATTTAATGACCAACCAGAACTTGTTGTTGAAAATGGCTATAATGAGCATTCCGGAAAATATGCCGCACTAGTCTTCCCTCCAAGATTATGTCAATTGGGCTTGACATACTTAGGGAGAAATGAGATGTCCATTCTCTTTCCTATTGCGTCTCGTCTGAGGAAATTGGATCTTCTTTATGCACTTCTTGACACAGCAGCCCACTGTTTCTTACTGCAAAGGTGTCCCAACTTGGAAATTCTTGAGACTAGGAATGTTGTTGGGGATAGAGGATTGGAAGTGCTTGGCCAGTACTGTAAGAGGTTAAAGCGGCTCAGGATTGAGAGAGGAGCTGATGATCAGGAGATGGAGGATGAAGAAGGTGCGGTTACACACAGAGGATTGATTGATTTGGCAAAGGGATGTCTTGAACTAGAATACATGGCTGTTTATGTGTCAGATATTACTAATGAAGCTTTGGAAGTTATTGGTACATATCTGAAAAATCTGAGTGATTTTCGGCTGGTTTTGCTTGACAGAGAAGAAAGAATAACAGATCTGCCACTTGATAATGGTGTGCGTGCTTTACTAAGAGGTTGCCATAATCTTAGAAGATTTGCCCTCTATGTCCGGCCTGGGGGCCTTACTGATGTAGGTCTCAGTTATGTCGGGCAATACAGCCCAAACGTGAGATGGATGCTTCTGGGATACGTTGGGGAATCCGATCATGGCCTTCTGGAGTTCTCTAAAGGATGTCCGAGCCTGCAAAAGCTAGAAGTGAGAGGCTGCTGTTTCAGTGAACGTGCATTAGCCTTGGCTACCTTGCAGCTAAAATCGTTAAGGTATCTATGGGTACAAGGATACAGGGCATCTTCAGCTGGTCGTGATCTCTTAGCGATGGCTCGCCCATTCTGGAATATTGAATTGATTCCTGCAAGACGAGTTATTGCCAACGATGGAAATAATGCAGAAACTGTAGTCTCGGAGCATCCAGCCCATATACTTGCCTACTATTCTCTTGCCGGACAAAGAACAGATTTTCCAGACACTGTCAAGCCTTTGGACCCAACTTACCTTCTCGCTGAATAGGTTTGTAAATATAACTTTTCCTTGAGTGAAGTTGTTCGAGGTCTATTTGCTTCCTTTTTAGGTGTCTTGTCCATATGTATGCCTCTTCTTTTCCTCCCCTTTTTCCTTGATGAGAGTTTTTTTTCCACATTGATTTTGATCTTCTCTTTTAGACATGCATTCTGTAATAAATTTGCTTTCCTTGGGTTATCTGTAATCTAACATTTGGTGATCTACGTTCCTAATCCCCCCTGATCTCATCTTCTTCTGTGCTTTGGGTTAAACTAAACATTTG
CCAAAAAAAAATAAAAAAAAAATAAAAAATAAAATACTATCATACTGTCGCCGTCCGATCTTCTTTCTCTCTCTACATCTCTCCGTTCAATCTCTCTCCTCCATCTTCTTCAACTGTAACCTCTCTTCCATTATCAGTGTCAAGTTGTTGAAGTTTTGGTCATGGTCATGGTGTAATTTGTTGTTAGTATTTTGAAGTATTTGTGTTTTTGATTTGGTTTTGGTTTTAATGGAGGAACGGAACTCAACGAGATTGAGTAGCTCAACAAACGATACAGTATGGGAGTGTGTGATTCCGTATATACAGGAATCGCGTGATAGAGACGCGGTATCGTTGGTATGTAAGAGGTGGTGGCAGATCGATGCGATTACTAGAAAGCATATAACTATGGCGTTGTGTTATACAGCGAAACCAGAGCAGTTATCTAGAAGGTTTCCACATCTTGAATCGGTTAAACTGAAAGGGAAACCAAGAGCTGCTATGTTTAATTTGATACCGGAAGATTGGGGAGGATATGTTACACCTTGGGTTATGGAGATAACTAAGTCGTTTAGTAAATTGAAAGCACTTCATTTTCGTAGAATGATTGTTAGAGATTCGGATCTCGAATTACTTGCGAATCGTCGTGGAAGAGTTCTTCAAGTTTTGAAGCTGGATAAGTGTTCTGGATTTTCTACTGATGGTCTTCTGCATATTTCTCGTTCCTGCAAGAACTTAAGAACTTTGTTAATGGAAGAGAGTTATATAATTGAGAAAGATGGAGAATGGGCACATGAACTAGCATTGAACAACACTGTTCTTGAGAATTTGAACTTTTACATGACAGATCTTCTGCAAGTTAGGGCTGAAGATCTTGAATTGATAGCAAGAAATTGTAAATCTCTAGTCTCTATGAAAATTAGCGAGTGTGAAATTACGAATCTTCTTGGCTTCTTTAGAGCTGCGGCTGCATTGGAGGAGTTTGGTGGTGGCGCATTTAATGACCAACCAGAACTTGTTGTTGAAAATGGCTATAATGAGCATTCCGGAAAATATGCCGCACTAGTCTTCCCTCCAAGATTATGTCAATTGGGCTTGACATACTTAGGGAGAAATGAGATGTCCATTCTCTTTCCTATTGCGTCTCGTCTGAGGAAATTGGATCTTCTTTATGCACTTCTTGACACAGCAGCCCACTGTTTCTTACTGCAAAGGTGTCCCAACTTGGAAATTCTTGAGACTAGGAATGTTGTTGGGGATAGAGGATTGGAAGTGCTTGGCCAGTACTGTAAGAGGTTAAAGCGGCTCAGGATTGAGAGAGGAGCTGATGATCAGGAGATGGAGGATGAAGAAGGTGCGGTTACACACAGAGGATTGATTGATTTGGCAAAGGGATGTCTTGAACTAGAATACATGGCTGTTTATGTGTCAGATATTACTAATGAAGCTTTGGAAGTTATTGGTACATATCTGAAAAATCTGAGTGATTTTCGGCTGGTTTTGCTTGACAGAGAAGAAAGAATAACAGATCTGCCACTTGATAATGGTGTGCGTGCTTTACTAAGAGGTTGCCATAATCTTAGAAGATTTGCCCTCTATGTCCGGCCTGGGGGCCTTACTGATGTAGGTCTCAGTTATGTCGGGCAATACAGCCCAAACGTGAGATGGATGCTTCTGGGATACGTTGGGGAATCCGATCATGGCCTTCTGGAGTTCTCTAAAGGATGTCCGAGCCTGCAAAAGCTAGAAGTGAGAGGCTGCTGTTTCAGTGAACGTGCATTAGCCTTGGCTACCTTGCAGCTAAAATCGTTAAGGTATCTATGGGTACAAGGATACAGGGCATCTTCAGCTGGTCGTGATCTCTTAGCGATGGCTCGCCCATTCTGGAATATTGAATTGATTCCTGCAAGACGAGTTATTGCCAACGATGGAAATAATGCAGAAACTGTAGTCTCGGAGCATCCAGCCCATATACTTGCCTACTATTCTCTTGCCGGACAAAGAACAGATTTTCCAGACACTGTCAAGCCTTTGGACCCAACTTACCTTCTCGCTGAATAGGTTTGTAAATATAACTTTTCCTTGAGTGAAGTTGTTCGAGGTCTATTTGCTTCCTTTTTAGGTGTCTTGTCCATATGTATGCCTCTTCTTTTCCTCCCCTTTTTCCTTGATGAGAGTTTTTTTTCCACATTGATTTTGATCTTCTCTTTTAGACATGCATTCTGTAATAAATTTGCTTTCCTTGGGTTATCTGTAATCTAACATTTGGTGATCTACGTTCCTAATCCCCCCTGATCTCATCTTCTTCTGTGCTTTGGGTTAAACTAAACATTTG
![]() ![]() | translated polypeptide sequence |
>Solyc05g052620.2.1 Coronatine-insensitive 1 (Fragment) (AHRD V1 *--- Q5VJQ1_TOBAC)
MEERNSTRLSSSTNDTVWECVIPYIQESRDRDAVSLVCKRWWQIDAITRKHITMALCYTAKPEQLSRRFPHLESVKLKGKPRAAMFNLIPEDWGGYVTPWVMEITKSFSKLKALHFRRMIVRDSDLELLANRRGRVLQVLKLDKCSGFSTDGLLHISRSCKNLRTLLMEESYIIEKDGEWAHELALNNTVLENLNFYMTDLLQVRAEDLELIARNCKSLVSMKISECEITNLLGFFRAAAALEEFGGGAFNDQPELVVENGYNEHSGKYAALVFPPRLCQLGLTYLGRNEMSILFPIASRLRKLDLLYALLDTAAHCFLLQRCPNLEILETRNVVGDRGLEVLGQYCKRLKRLRIERGADDQEMEDEEGAVTHRGLIDLAKGCLELEYMAVYVSDITNEALEVIGTYLKNLSDFRLVLLDREERITDLPLDNGVRALLRGCHNLRRFALYVRPGGLTDVGLSYVGQYSPNVRWMLLGYVGESDHGLLEFSKGCPSLQKLEVRGCCFSERALALATLQLKSLRYLWVQGYRASSAGRDLLAMARPFWNIELIPARRVIANDGNNAETVVSEHPAHILAYYSLAGQRTDFPDTVKPLDPTYLLAE*
MEERNSTRLSSSTNDTVWECVIPYIQESRDRDAVSLVCKRWWQIDAITRKHITMALCYTAKPEQLSRRFPHLESVKLKGKPRAAMFNLIPEDWGGYVTPWVMEITKSFSKLKALHFRRMIVRDSDLELLANRRGRVLQVLKLDKCSGFSTDGLLHISRSCKNLRTLLMEESYIIEKDGEWAHELALNNTVLENLNFYMTDLLQVRAEDLELIARNCKSLVSMKISECEITNLLGFFRAAAALEEFGGGAFNDQPELVVENGYNEHSGKYAALVFPPRLCQLGLTYLGRNEMSILFPIASRLRKLDLLYALLDTAAHCFLLQRCPNLEILETRNVVGDRGLEVLGQYCKRLKRLRIERGADDQEMEDEEGAVTHRGLIDLAKGCLELEYMAVYVSDITNEALEVIGTYLKNLSDFRLVLLDREERITDLPLDNGVRALLRGCHNLRRFALYVRPGGLTDVGLSYVGQYSPNVRWMLLGYVGESDHGLLEFSKGCPSLQKLEVRGCCFSERALALATLQLKSLRYLWVQGYRASSAGRDLLAMARPFWNIELIPARRVIANDGNNAETVVSEHPAHILAYYSLAGQRTDFPDTVKPLDPTYLLAE*
![]() ![]() |
![]() ![]() | [Associate new unigene] |
Unigene ID:
[loading...]
![]() ![]() | [Associate new genbank sequence] |
Other genome matches | None |
![]() ![]() | [Associate publication] [Matching publications] |
Genetic analysis of wound signaling in tomato. Evidence for a dual role of jasmonic acid in defense and female fertility.
Plant physiology (2001)
Show / hide abstract
Show / hide abstract
Li, L. Li, C. Howe, GA.
Plant physiology.
2001.
127(4).
1414-7.
Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato.
Proceedings of the National Academy of Sciences of the United States of America (2002)
Show / hide abstract
Show / hide abstract
Plant defense responses to wounding and herbivore attack are regulated by signal transduction pathways that operate both at the site of wounding and in undamaged distal leaves. Genetic analysis in tomato indicates that systemin and its precursor protein, prosystemin, are upstream components of a wound-induced, intercellular signaling pathway that involves both the biosynthesis and action of jasmonic acid (JA). To examine the role of JA in systemic signaling, reciprocal grafting experiments were used to analyze wound-induced expression of the proteinase inhibitor II gene in a JA biosynthetic mutant (spr-2) and a JA response mutant (jai-1). The results showed that spr-2 plants are defective in the production, but not recognition, of a graft-transmissible wound signal. Conversely, jai-1 plants are compromised in the recognition of this signal but not its production. It was also determined that a graft-transmissible signal produced in response to ectopic expression of prosystemin in rootstocks was recognized by spr-2 but not by jai-1 scions. Taken together, the results show that activation of the jasmonate biosynthetic pathway in response to wounding or (pro)systemin is required for the production of a long-distance signal whose recognition in distal leaves depends on jasmonate signaling. These findings suggest that JA, or a related compound derived from the octadecanoid pathway, may act as a transmissible wound signal.
Li, L. Li, C. Lee, GI. Howe, GA.
Proceedings of the National Academy of Sciences of the United States of America.
2002.
99(9).
6416-21.
Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway.
The Plant journal : for cell and molecular biology (2003)
Show / hide abstract
Show / hide abstract
Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) causes bacterial speck disease on tomato. The pathogenicity of Pst DC3000 depends on both the type III secretion system that delivers virulence effector proteins into host cells and the phytotoxin coronatine (COR), which is thought to mimic the action of the plant hormone jasmonic acid (JA). We found that a JA-insensitive mutant (jai1) of tomato was unresponsive to COR and highly resistant to Pst DC3000, whereas host genotypes that are defective in JA biosynthesis were as susceptible to Pst DC3000 as wild-type (WT) plants. Treatment of WT plants with exogenous methyl-JA (MeJA) complemented the virulence defect of a bacterial mutant deficient in COR production, but not a mutant defective in the type III secretion system. Analysis of host gene expression using cDNA microarrays revealed that COR works through Jai1 to induce the massive expression of JA and wound response genes that have been implicated in defense against herbivores. Concomitant with the induction of JA and wound response genes, the type III secretion system and COR repressed the expression of pathogenesis-related (PR) genes in Pst DC3000-infected WT plants. Resistance of jai1 plants to Pst DC3000 was correlated with a high level of PR gene expression and reduced expression of JA/wound response genes. These results indicate that COR promotes bacterial virulence by activating the host's JA signaling pathway, and further suggest that the type III secretion system might also modify host defense by targeting the JA signaling pathway in susceptible tomato plants.
Zhao, Y. Thilmony, R. Bender, CL. Schaller, A. He, SY. Howe, GA.
The Plant journal : for cell and molecular biology.
2003.
36(4).
485-99.
The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development.
The Plant cell (2004)
Show / hide abstract
Show / hide abstract
Jasmonic acid (JA) is a fatty acid-derived signaling molecule that regulates a broad range of plant defense responses against herbivores and some microbial pathogens. Molecular genetic studies in Arabidopsis have established that JA also performs a critical role in anther and pollen development but is not essential for other developmental aspects of the plant's life cycle. Here, we describe the phenotypic and molecular characterization of a sterile mutant of tomato (jasmonic acid-insensitive1 [jai1]) that is defective in JA signaling. Although the mutant exhibited reduced pollen viability, sterility was caused by a defect in the maternal control of seed maturation, which was associated with the loss of accumulation of JA-regulated proteinase inhibitor proteins in reproductive tissues. jai1 plants exhibited several defense-related phenotypes, including the inability to express JA-responsive genes, severely compromised resistance to two-spotted spider mites, and abnormal development of glandular trichomes. We demonstrate that these defects are caused by the loss of function of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1), an F-box protein that is required for JA-signaled processes in Arabidopsis. These findings indicate that the JA/COI1 signaling pathway regulates distinct developmental processes in different plants and suggest a role for JA in the promotion of glandular trichome-based defenses.
Li, L. Zhao, Y. McCaig, BC. Wingerd, BA. Wang, J. Whalon, ME. Pichersky, E. Howe, GA.
The Plant cell.
2004.
16(1).
126-43.
Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine.
The Journal of biological chemistry (2004)
Show / hide abstract
Show / hide abstract
In mammalian cells, induced expression of arginase in response to wound trauma and pathogen infection plays an important role in regulating the metabolism of L-arginine to either polyamines or nitric oxide (NO). In higher plants, which also utilize arginine for the production of polyamines and NO, the potential role of arginase as a control point for arginine homeostasis has not been investigated. Here, we report the characterization of two genes (LeARG1 and LeARG2) from Lycopersicon esculentum (tomato) that encode arginase. Phylogenic analysis showed that LeARG1 and -2, like all other plant arginases, are more similar to agmatinase than to arginases from vertebrates, fungi, and bacteria. Nevertheless, recombinant LeARG1 and -2 exhibited specificity for L-arginine over agmatine and related guanidino substrates. The plant enzymes, like mammalian arginases, were inhibited (K(i) approximately 14 microM) by the NO precursor N(G)-hydroxy-L-arginine. These results indicate that plant arginases define a distinct group of ureohydrolases that function as authentic L-arginases. LeARG1 and LeARG2 transcripts accumulated to their highest levels in reproductive tissues. In leaves, LeARG2 expression and arginase activity were induced in response to wounding and treatment with jasmonic acid (JA), a potent signal for plant defense responses. Wound- and JA-induced expression of LeARG2 was not observed in the tomato jasmonic acid-insensitive1 mutant, indicating that this response is strictly dependent on an intact JA signal transduction pathway. Infection of wild-type plants with a virulent strain of Pseudomonas syringae pv. tomato also up-regulated LeARG2 expression and arginase activity. This response was mediated by the bacterial phytotoxin coronatine, which exerts its virulence effects by co-opting the host JA signaling pathway. These results highlight striking similarities in the regulation of arginase in plants and animals and suggest that stress-induced arginase may perform similar roles in diverse biological systems.
Chen, H. McCaig, BC. Melotto, M. He, SY. Howe, GA.
The Journal of biological chemistry.
2004.
279(44).
45998-6007.
Systemic signaling in the wound response.
Current opinion in plant biology (2005)
Show / hide abstract
Show / hide abstract
In many plants, localized tissue damage elicits an array of systemic defense responses against herbivore attack. Progress in our understanding of the long-distance signaling events that control these responses has been aided by the identification of mutants that fail to mount systemic defenses in response to wounding. Grafting experiments conducted with various mutants of tomato indicate that systemic signaling requires both the biosynthesis of jasmonic acid at the site of wounding and the ability to perceive a jasmonate signal in remote tissues. These and other studies support the hypothesis that jasmonic acid regulates the production of, or acts as, a mobile wound signal. Following its synthesis in peroxisomes, further metabolism of jasmonic acid might enhance its stability, transport, or action in remote tissues. Recent studies in tomato suggest that the peptide signal systemin promotes long-distance defense responses by amplifying jasmonate production in vascular tissues.
Schilmiller, AL. Howe, GA.
Current opinion in plant biology.
2005.
8(4).
369-77.
The Pseudomonas syringae avrRpt2 gene contributes to virulence on tomato.
Molecular plant-microbe interactions : MPMI (2005)
Show / hide abstract
Show / hide abstract
In order to cause disease on plants, gram-negative phytopathogenic bacteria introduce numerous virulence factors into the host cell in order to render host tissue more hospitable for pathogen proliferation. The mode of action of such bacterial virulence factors and their interaction with host defense pathways remain poorly understood. avrRpt2, a gene from Pseudomonas syringae pv. tomato JL1065, has been shown to promote the virulence of heterologous P. syringae strains on Arabidopsis thaliana. However, the contribution of avrRpt2 to the virulence of JL1065 has not been examined previously. We show that a mutant derivative of JL1065 that carries a disruption in avrRpt2 is impaired in its ability to cause disease on tomato (Lycopersicon esculentum), indicating that avrRpt2 also acts as a virulence gene in its native strain on a natural host. The virulence activity of avrRpt2 was detectable on tomato lines that are defective in either ethylene perception or the accumulation of salicylic acid, but could not be detected on a tomato mutant insensitive to jasmonic acid. The enhanced virulence conferred by the expression of avrRpt2 in JL1065 was not associated with the suppression of several defense-related genes induced during the infection of tomato.
Lim, MT. Kunkel, BN.
Molecular plant-microbe interactions : MPMI.
2005.
18(7).
626-33.
Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut.
Proceedings of the National Academy of Sciences of the United States of America (2005)
Show / hide abstract
Show / hide abstract
The plant hormone jasmonic acid (JA) activates host defense responses against a broad spectrum of herbivores. Although it is well established that JA controls the expression of a large set of target genes in response to tissue damage, very few gene products have been shown to play a direct role in reducing herbivore performance. To test the hypothesis that JA-inducible proteins (JIPs) thwart attack by disrupting digestive processes in the insect gut, we used a MS-based approach to identify host proteins that accumulate in the midgut of Manduca sexta larvae reared on tomato (Solanum lycopersicum) plants. We show that two JIPs, arginase and threonine deaminase (TD), act in the M. sexta midgut to catabolize the essential amino acids Arg and Thr, respectively. Transgenic plants that overexpress arginase were more resistant to M. sexta larvae, and this effect was correlated with reduced levels of midgut Arg. We present evidence indicating that the ability of TD to degrade Thr in the midgut is enhanced by herbivore-induced proteolytic removal of the enzyme's C-terminal regulatory domain, which confers negative feedback regulation by isoleucine in planta. Our results demonstrate that the JA signaling pathway strongly influences the midgut protein content of phytophagous insects and support the hypothesis that catabolism of amino acids in the insect digestive tract by host enzymes plays a role in plant protection against herbivores.
Chen, H. Wilkerson, CG. Kuchar, JA. Phinney, BS. Howe, GA.
Proceedings of the National Academy of Sciences of the United States of America.
2005.
102(52).
19237-42.
The wound response mutant suppressor of prosystemin-mediated responses6 (spr6) is a weak allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1).
Plant & cell physiology (2006)
Show / hide abstract
Show / hide abstract
The systemic defense response of tomato plant in response to insect attack and wounding is regulated by the 18 amino acid peptide systemin and the phytohormone jasmonic acid (JA). Recent genetic analyses based mainly on spr (suppressors of prosystemin-mediated responses) mutant screens have led to the hypothesis that systemin acts at, or near, the site of wounding to amplify the production of JA, which in turn functions as a mobile signal to promote the systemic defense response. In order to identify more components involved in the systemin/JA-signaled defense response, we carried out a larger scale screen for new spr mutants in tomato. Here we describe the characterization of spr6, a mutant impaired in wound- and systemin-induced defense gene expression. Using a candidate gene approach based on genetic linkage, we demonstrate that spr6 is allelic to jai1-1, which is a loss-of-function allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1), an F-box protein that is required for JA-signaled processes in Arabidopsis. We show several aspects of the spr6 mutant phenotype distinct from that of jai1-1. First, the responsiveness of spr6 plants to exogenous JA shows a dosage dependency, i.e. it is more sensitive to JA than jai1-1 while less sensitive to JA than the wild-type. Secondly, unlike the sterile jai1-1, the spr6 plant displays normal fertility and seed set and thus can be maintained as a pure line and does not require selection. Therefore, spr6 provides a valuable tool, which can complement the limitations of jai1-1, to study JA signaling in tomato. The gene identification process of Spr6 we described herein represents an example showing the convenience of a candidate gene approach, based on genetic linkage, to identify gene functions of genetic loci defined by tomato wound response mutants.
Li, C. Zhao, J. Jiang, H. Wu, X. Sun, J. Zhang, C. Wang, X. Lou, Y. Li, C.
Plant & cell physiology.
2006.
47(5).
653-63.
Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato.
FEBS letters (2006)
Show / hide abstract
Show / hide abstract
The phytohormone jasmonic acid (JA) regulates the synthesis of secondary metabolites in a wide range of plant species. Here, we show that exogenous methyl-JA (MeJA) elicits massive accumulation of caffeoylputrescine (CP) in tomato leaves. A mutant (jai1) that is defective in jasmonate perception failed to accumulate CP in flowers and MeJA-treated leaves. Conversely, a transgenic tomato line (called 35S::PS) that exhibits constitutive JA signaling accumulated high levels of leaf CP in the absence of jasmonate treatment. RNA blot analysis showed that genes encoding enzymes in the phenylpropanoid and polyamine pathways for CP biosynthesis are upregulated in MeJA-treated wild-type plants and in untreated 35S::PS plants. These results indicate that CP accumulation in tomato is tightly controlled by the jasmonate signaling pathway, and provide proof-of-concept that the production of some plant secondary metabolites can be enhanced by transgenic manipulation of endogenous JA levels.
Chen, H. Jones, AD. Howe, GA.
FEBS letters.
2006.
580(11).
2540-6.
The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato.
Molecular plant-microbe interactions : MPMI (2007)
Show / hide abstract
Show / hide abstract
The expression of LeATL6, an ortholog of Arabidopsis ATL6 that encodes a RING-H2 finger protein, was induced in tomato roots treated with a cell wall protein fraction (CWP) elicitor of the biocontrol agent Pythium oligandrum. The LeATL6 protein was expressed as a fusion protein with a maltose-binding protein (MBP) in Escherichia coli, and it catalyzed the transfer of ubiquitin to the MBP moiety on incubation with ubiquitin, the ubiquitin-activating enzyme E1, and the ubiquitin-conjugating enzyme E2; this indicated that LeATL6 represents ubiquitin ligase E3. LeATL6 expression also was induced by elicitor treatment of jail-1 mutant tomato cells in which the jasmonic acid (JA)-mediated signaling pathway was impaired; however, JA-dependent expression of the basic PR-6 and TPI-1 genes that encode proteinase inhibitor II and I, respectively, was not induced in elicitor-treated jail-1 mutants. Furthermore, transient overexpression of LeATL6 under the control of the Cauliflower mosaic virus 35S promoter induced the basic PR6 and TPI-1 expression in wild tomato but not in the jail-1 mutant. In contrast, LeATL6 overexpression did not activate salicylic acid-responsive acidic PR-1 and PR-2 promoters in wild tomato. These results indicated that elicitor-responsive LeATL6 probably regulates JA-dependent basic PR6 and TPI-1 gene expression in tomato. The LeATL6-associated ubiquitin/proteasome system may contribute to elicitor-activated defense responses via a JA-dependent signaling pathway in plants.
Hondo, D. Hase, S. Kanayama, Y. Yoshikawa, N. Takenaka, S. Takahashi, H.
Molecular plant-microbe interactions : MPMI.
2007.
20(1).
72-81.
Stability of plant defense proteins in the gut of insect herbivores.
Plant physiology (2007)
Show / hide abstract
Show / hide abstract
Plant defense against insect herbivores is mediated in part by enzymes that impair digestive processes in the insect gut. Little is known about the evolutionary origins of these enzymes, their distribution in the plant kingdom, or the mechanisms by which they act in the protease-rich environment of the animal digestive tract. One example of such an enzyme is threonine (Thr) deaminase (TD), which in tomato (Solanum lycopersicum) serves a dual role in isoleucine (Ile) biosynthesis in planta and Thr degradation in the insect midgut. Here, we report that tomato uses different TD isozymes to perform these functions. Whereas the constitutively expressed TD1 has a housekeeping role in Ile biosynthesis, expression of TD2 in leaves is activated by the jasmonate signaling pathway in response to herbivore attack. Ingestion of tomato foliage by specialist (Manduca sexta) and generalist (Trichoplusia ni) insect herbivores triggered proteolytic removal of TD2's C-terminal regulatory domain, resulting in an enzyme that degrades Thr without being inhibited through feedback by Ile. This processed form (pTD2) of TD2 accumulated to high levels in the insect midgut and feces (frass). Purified pTD2 exhibited biochemical properties that are consistent with a postingestive role in defense. Shotgun proteomic analysis of frass from tomato-reared M. sexta identified pTD2 as one of the most abundant proteins in the excrement. Among the other tomato proteins identified were several jasmonate-inducible proteins that have a known or proposed role in anti-insect defense. Subtilisin-like proteases and other pathogenesis-related proteins, as well as proteins of unknown function, were also cataloged. We conclude that proteomic analysis of frass from insect herbivores provides a robust experimental approach to identify hyperstable plant proteins that serve important roles in defense.
Chen, H. Gonzales-Vigil, E. Wilkerson, CG. Howe, GA.
Plant physiology.
2007.
143(4).
1954-67.
JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling.
Nature (2007)
Show / hide abstract
Show / hide abstract
Jasmonate and related signalling compounds have a crucial role in both host immunity and development in plants, but the molecular details of the signalling mechanism are poorly understood. Here we identify members of the jasmonate ZIM-domain (JAZ) protein family as key regulators of jasmonate signalling. JAZ1 protein acts to repress transcription of jasmonate-responsive genes. Jasmonate treatment causes JAZ1 degradation and this degradation is dependent on activities of the SCF(COI1) ubiquitin ligase and the 26S proteasome. Furthermore, the jasmonoyl-isoleucine (JA-Ile) conjugate, but not other jasmonate-derivatives such as jasmonate, 12-oxo-phytodienoic acid, or methyl-jasmonate, promotes physical interaction between COI1 and JAZ1 proteins in the absence of other plant proteins. Our results suggest a model in which jasmonate ligands promote the binding of the SCF(COI1) ubiquitin ligase to and subsequent degradation of the JAZ1 repressor protein, and implicate the SCF(COI1)-JAZ1 protein complex as a site of perception of the plant hormone JA-Ile.
Thines, B. Katsir, L. Melotto, M. Niu, Y. Mandaokar, A. Liu, G. Nomura, K. He, SY. Howe, GA. Browse, J.
Nature.
2007.
448(7154).
661-5.
COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine.
Proceedings of the National Academy of Sciences of the United States of America (2008)
Show / hide abstract
Show / hide abstract
Jasmonate (JA) is a lipid-derived hormone that regulates diverse aspects of plant immunity and development. An amino acid-conjugated form of JA, jasmonoyl-isoleucine (JA-Ile), stimulates binding of the F-box protein coronatine-insensitive 1 (COI1) to, and subsequent ubiquitin-dependent degradation of, jasmonate ZIM domain (JAZ) proteins that repress transcription of JA-responsive genes. The virulence factor coronatine (COR), which is produced by plant pathogenic strains of Pseudomonas syringae, suppresses host defense responses by activating JA signaling in a COI1-dependent manner. Although previous data indicate that COR acts as a molecular mimic of JA-Ile, the mechanism by which JA-Ile and COR are perceived by plant cells remains unknown. Here, we show that interaction of tomato COI1 with divergent members of the JAZ family is highly specific for JA-Ile and structurally related JA conjugates and that COR is approximately 1,000-fold more active than JA-Ile in promoting this interaction in vitro. JA-Ile competes for binding of COR to COI1-JAZ complexes, demonstrating that COR and JA-Ile are recognized by the same receptor. Binding of COR to the COI1-JAZ complex requires COI1 and is severely impaired by a point mutation in the putative ligand-binding pocket of COI1. Finally, we show that the C-terminal region of JAZ3 containing the highly conserved Jas motif is necessary and sufficient for hormone-induced COI1-JAZ interaction. These findings demonstrate that COI1 is a critical component of the JA receptor and that COR exerts its virulence effects by functioning as a potent agonist of this receptor system.
Katsir, L. Schilmiller, AL. Staswick, PE. He, SY. Howe, GA.
Proceedings of the National Academy of Sciences of the United States of America.
2008.
105(19).
7100-5.
Tomato susceptibility to root-knot nematodes requires an intact jasmonic Acid signaling pathway.
Molecular plant-microbe interactions : MPMI (2008)
Show / hide abstract
Show / hide abstract
Responses of resistant (Mi-1/Mi-1) and susceptible (mi-1/ mi-1) tomato (Solanum lycopersicum) to root-knot nematodes (RKNs; Meloidogyne spp.) infection were monitored using cDNA microarrays, and the roles of salicylic acid (SA) and jasmonic acid (JA) defense signaling were evaluated in these interactions. Array analysis was used to compare transcript profiles in incompatible and compatible interactions of tomato roots 24 h after RKN infestation. The jai1 and def1 tomato mutant, altered in JA signaling, and tomato transgenic line NahG, altered in SA signaling, in the presence or absence of the RKN resistance gene Mi-1, were evaluated. The array analysis identified 1,497 and 750 genes differentially regulated in the incompatible and compatible interactions, respectively. Of the differentially regulated genes, 37% were specific to the incompatible interactions. NahG affected neither Mi-1 resistance nor basal defenses to RKNs. However, jai1 reduced tomato susceptibility to RKNs while not affecting Mi-1 resistance. In contrast, the def1 mutant did not affect RKN susceptibility. These results indicate that JA-dependent signaling does not play a role in Mi-1-mediated defense; however, an intact JA signaling pathway is required for tomato susceptibility to RKNs. In addition, low levels of SA might be sufficient for basal and Mi-1 resistance to RKNs.
Bhattarai, KK. Xie, QG. Mantelin, S. Bishnoi, U. Girke, T. Navarre, DA. Kaloshian, I.
Molecular plant-microbe interactions : MPMI.
2008.
21(9).
1205-14.
![]() ![]() | [Add ontology annotations] |
[loading...]
![]() ![]() |
User comments |
Please wait, checking for comments. (If comments do not show up, access them here)
Your Lists
Public Lists
List Contents
List Validation Report: Failed
Elements not found:
Optional: Add Missing Accessions to A List
Mismatched case
Click the Adjust Case button to align the case in the list with what is in the database.
Multiple mismatched case
Items listed here have mulitple case mismatches and must be fixed manually. If accessions need to be merged, contact the database directly.
List elements matching a synonym
Multiple synonym matches
Fuzzy Search Results
Synonym Search Results
Available Seedlots
Your Datasets
Public Datasets
Dataset Contents
Dataset Validation Failed
Elements not found:
Your Calendar
Having trouble viewing events on the calendar?
Are you associated with the breeding program you are interested in viewing?
Add New Event
Event Info
Attribute | Value |
---|---|
Project Name: | |
Start Date: | |
End Date: | |
Event Type: | |
Event Description: | |
Event Web URL: |
Edit Event
Login
Forgot Username
If you've forgotten your username, enter your email address below. An email will be sent with any account username(s) associated with your email address.
Reset Password
To reset your password, please enter your email address. A link will be sent to that address with a link that will enable you to reset your password.
Create New User
Working
