This site uses cookies to provide logins and other features. Please accept the use of cookies by clicking Accept.
Tomato locus test gene
| Locus details | Download GMOD XML | Note to Editors | Annotation guidelines |
[loading edit links...]
|
[loading...]
|
|
| Links to external databases | None |
| Registry name: | None | [Associate registry name] |
Notes and figures (6)
Notes and figures (6)
| [Add notes, figures or images] |
Accessions and images (0)
Accessions and images (0)
| [Associate accession] |
Accession name:
Would you Like to specify an allele?
| Alleles (0) | None | [Add new Allele] |
Associated loci (0)
Associated loci (0)
| [Associate new locus] |
[loading...]
|
| Associated loci - graphical view | None |
SolCyc links
SolCyc links
|
[loading...]
Sequence annotations
Sequence annotations
|
| Genome features | None |
Gene model matches
Gene model matches
|
SGN Unigenes
SGN Unigenes
| [Associate new unigene] |
Unigene ID:
[loading...]
GenBank accessions
GenBank accessions
| [Associate new genbank sequence] |
| Other genome matches | None |
Literature annotations [3]
Literature annotations [3]
| [Associate publication] [Matching publications] |
Expression of G-Ry derived from the potato (Solanum tuberosum L.) increases PVY(O) resistance.
Journal of agricultural and food chemistry (2010)
Show / hide abstract
Show / hide abstract
In Solanaceae, potato virus Y(O) (PVY(O)) is a widespread virus leading to severe damages such as necrosis, molting, and yield reduction. The resistance Y gene (Ry gene) of potato specifically confers resistance to PVY infection. Previously, potatoes resistant to PVY(O) infection were screened among the 32 Korean cultivars. 'Golden Valley' displayed the most resistance to PVY(O) infection. 'Golden Valley''s Ry gene (G-Ry) was cloned from 'Golden Valley', and the function was investigated. G-Ry protein contains 1134 amino acid residues and is structurally similar to the Y-1, which confers resistance to PVY infection in Solanum tuberosum subsp. andigena. To generate a PVY(O)-resistant potato, the G-Ry gene has been introduced into 'Winter Valley', the cultivar most susceptible to PVY(O) infection among the 32 Korean cultivars. Transgenic 'Winter Valley' ('Winter Valley'-G) showed an increased resistance to PVY infection. This approach may ultimately lead to the development of a virus-resistant plant.
Lee, C. Park, J. Hwang, I. Park, Y. Cheong, H.
Journal of agricultural and food chemistry.
2010.
58(12).
7245-51.
Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors.
Proceedings of the National Academy of Sciences of the United States of America (2010)
Show / hide abstract
Show / hide abstract
Carotenoids are key for plants to optimize carbon fixing using the energy of sunlight. They contribute to light harvesting but also channel energy away from chlorophylls to protect the photosynthetic apparatus from excess light. Phytochrome-mediated light signals are major cues regulating carotenoid biosynthesis in plants, but we still lack fundamental knowledge on the components of this signaling pathway. Here we show that phytochrome-interacting factor 1 (PIF1) and other transcription factors of the phytochrome-interacting factor (PIF) family down-regulate the accumulation of carotenoids by specifically repressing the gene encoding phytoene synthase (PSY), the main rate-determining enzyme of the pathway. Both in vitro and in vivo evidence demonstrate that PIF1 directly binds to the promoter of the PSY gene, and that this binding results in repression of PSY expression. Light-triggered degradation of PIFs after interaction with photoactivated phytochromes during deetiolation results in a rapid derepression of PSY gene expression and a burst in the production of carotenoids in coordination with chlorophyll biosynthesis and chloroplast development for an optimal transition to photosynthetic metabolism. Our results also suggest a role for PIF1 and other PIFs in transducing light signals to regulate PSY gene expression and carotenoid accumulation during daily cycles of light and dark in mature plants.
Toledo-Ortiz, G. Huq, E. Rodríguez-Concepción, M.
Proceedings of the National Academy of Sciences of the United States of America.
2010.
107(25).
11626-31.
Accurate and sensitive diagnosis of geminiviruses through enrichment, high-throughput sequencing and automated sequence identification.
Archives of virology (2012)
Show / hide abstract
Show / hide abstract
Existing diagnostic techniques used to identify plant-infecting DNA viruses and their associated molecules are often limited in their specificity and can be challenged by samples containing multiple viruses. We adapted a simple method of amplifying circular viral DNA and, in combination with high-throughput sequencing and bioinformatic analysis, used it as a virus diagnostic method. We validated this diagnostic method with a plant sample infected with a tomato yellow leaf curl geminivirus infectious clone and also compared PCR- and high-throughput-sequencing diagnostics on a geminivirus-infected field sample, showing that both methods gave similar results. Finally, we analyzed infected field samples of pepper from Mexico and tomato from India using this approach, demonstrating that it is both sensitive and capable of simultaneously identifying multiple discrete DNA viruses and subviral DNA elements in densely infected samples.
Hagen, C. Frizzi, A. Gabriels, S. Huang, M. Salati, R. Gabor, B. Huang, S.
Archives of virology.
2012.
().
.
Ontology annotations (9)
Ontology annotations (9)
| [Add ontology annotations] |
[loading...]
Related views
Related views
|
none found
| User comments |
Please wait, checking for comments. (If comments do not show up, access them here)
Your Lists
Public Lists
List Contents
List Validation Report: Failed
Elements not found:
Optional: Add Missing Accessions to A List
Mismatched case
Click the Adjust Case button to align the case in the list with what is in the database.
Multiple mismatched case
Items listed here have mulitple case mismatches and must be fixed manually. If accessions need to be merged, contact the database directly.
List elements matching a synonym
Multiple synonym matches
Fuzzy Search Results
Synonym Search Results
Available Seedlots
Your Datasets
Public Datasets
Dataset Contents
Dataset Validation Failed
Elements not found:
Your Calendar
Having trouble viewing events on the calendar?
Are you associated with the breeding program you are interested in viewing?
Add New Event
Event Info
| Attribute | Value |
|---|---|
| Project Name: | |
| Start Date: | |
| End Date: | |
| Event Type: | |
| Event Description: | |
| Event Web URL: |
Edit Event
Login
Forgot Username
If you've forgotten your username, enter your email address below. An email will be sent with any account username(s) associated with your email address.
Reset Password
To reset your password, please enter your email address. A link will be sent to that address with a link that will enable you to reset your password.
Create New User
Working

Notes and figures (6)
Notes and figures (6)
