This site uses cookies to provide logins and other features. Please accept the use of cookies by clicking Accept.
Tobacco locus small subunit ribosomal RNA
Locus details | Download GMOD XML | Note to Editors | Annotation guidelines |
[loading edit links...]
|
[loading...]
|
|
Links to external databases | None |
Registry name: | None | [Associate registry name] |
![]() ![]() | [Add notes, figures or images] |
Success
The display image was set successfully.
Image | Description | Type |
---|
![]() ![]() | [Associate accession] |
Accession name:
Would you Like to specify an allele?
Alleles (0) | None | [Add new Allele] |
![]() ![]() | [Associate new locus] |
[loading...]
|
Associated loci - graphical view | None |
![]() ![]() |
[loading...]
![]() ![]() |
Genome features | None |
![]() ![]() |
![]() ![]() | [Associate new unigene] |
Unigene ID:
[loading...]
![]() ![]() | [Associate new genbank sequence] |
Other genome matches | None |
![]() ![]() | [Associate publication] [Matching publications] |
Characterization of mitochondrial small-subunit ribosomal RNAs from holoparasitic plants.
Journal of molecular evolution (1997)
Show / hide abstract
Show / hide abstract
Mitochondrial small-subunit (19S) rDNA sequences were obtained from 10 angiosperms to further characterize sequence divergence levels and structural variation in this molecule. These sequences were derived from seven holoparasitic (nonphotosynthetic) angiosperms as well as three photosynthetic plants. 19S rRNA is composed of a conservative core region (ca. 1450 nucleotides) as well as two variable regions (V1 and V7). In pairwise comparisons of photosynthetic angiosperms to Glycine, the core 19S rDNA sequences differed by less than 1.4%, thus supporting the observation that variation in mitochondrial rDNA is 3-4 times lower than seen in protein coding and rDNA genes of other subcellular organelles. Sequences representing four distinct lineages of nonasterid holoparasites showed significantly increased numbers of substitutions in their core 19S rDNA sequences (2.3-7.6%), thus paralleling previous findings that showed accelerated rates in nuclear (18S) and plastid (16S) rDNA from the same plants. Relative rate tests confirmed the accelerated nucleotide substitution rates in the holoparasites whereas rates in nonparasitic plants were not significantly increased. Among comparisons of both parasitic and nonparasitic plants, transversions outnumbered transitions, in many cases more than two to one. The core 19S rRNA is conserved in sequence and structure among all nonparasitic angiosperms whereas 19S rRNA from members of holoparasitic Balanophoraceae have unique extensions to the V5 and V6 variable domains. Substitution and insertion/deletion mutations characterized the V1 and V7 regions of the nonasterid holoparasites. The V7 sequence of one holoparasite (Scybalium) contained repeat motifs. The cause of substitution rate increases in the holoparasites does not appear to be a result of RNA editing, hence the underlying molecular mechanism remains to be fully documented.
Duff, RJ. Nickrent, DL.
Journal of molecular evolution.
1997.
45(6).
631-9.
Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers.
Proceedings of the National Academy of Sciences of the United States of America (2000)
Show / hide abstract
Show / hide abstract
Phylogenetic relationships among the five groups of extant seed plants are presently quite unclear. For example, morphological studies consistently identify the Gnetales as the extant sister group to angiosperms (the so-called "anthophyte" hypothesis), whereas a number of molecular studies recover gymnosperm monophyly, and few agree with the morphology-based placement of Gnetales. To better resolve these and other unsettled issues, we have generated a new molecular data set of mitochondrial small subunit rRNA sequences, and have analyzed these data together with comparable data sets for the nuclear small subunit rRNA gene and the chloroplast rbcL gene. All nuclear analyses strongly ally Gnetales with a monophyletic conifers, whereas all mitochondrial analyses and those chloroplast analyses that take into account saturation of third-codon position transitions actually place Gnetales within conifers, as the sister group to the Pinaceae. Combined analyses of all three genes strongly support this latter relationship, which to our knowledge has never been suggested before. The combined analyses also strongly support monophyly of extant gymnosperms, with cycads identified as the basal-most group of gymnosperms, Ginkgo as the next basal, and all conifers except for Pinaceae as sister to the Gnetales + Pinaceae clade. According to these findings, the Gnetales may be viewed as extremely divergent conifers, and the many morphological similarities between angiosperms and Gnetales (e.g., double fertilization and flower-like reproductive structures) arose independently.
Chaw, SM. Parkinson, CL. Cheng, Y. Vincent, TM. Palmer, JD.
Proceedings of the National Academy of Sciences of the United States of America.
2000.
97(8).
4086-91.
Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants.
Molecular biology and evolution (2000)
Show / hide abstract
Show / hide abstract
A widely held view of land plant relationships places liverworts as the first branch of the land plant tree, whereas some molecular analyses and a cladistic study of morphological characters indicate that hornworts are the earliest land plants. To help resolve this conflict, we used parsimony and likelihood methods to analyze a 6, 095-character data set composed of four genes (chloroplast rbcL and small-subunit rDNA from all three plant genomes) from all major land plant lineages. In all analyses, significant support was obtained for the monophyly of vascular plants, lycophytes, ferns (including PSILOTUM: and EQUISETUM:), seed plants, and angiosperms. Relationships among the three bryophyte lineages were unresolved in parsimony analyses in which all positions were included and weighted equally. However, in parsimony and likelihood analyses in which rbcL third-codon-position transitions were either excluded or downweighted (due to apparent saturation), hornworts were placed as sister to all other land plants, with mosses and liverworts jointly forming the second deepest lineage. Decay analyses and Kishino-Hasegawa tests of the third-position-excluded data set showed significant support for the hornwort-basal topology over several alternative topologies, including the commonly cited liverwort-basal topology. Among the four genes used, mitochondrial small-subunit rDNA showed the lowest homoplasy and alone recovered essentially the same topology as the multigene tree. This molecular phylogeny presents new opportunities to assess paleontological evidence and morphological innovations that occurred during the early evolution of terrestrial plants.
Nickrent, DL. Parkinson, CL. Palmer, JD. Duff, RJ.
Molecular biology and evolution.
2000.
17(12).
1885-95.
![]() ![]() | [Add ontology annotations] |
[loading...]
![]() ![]() |
none found
User comments |
Please wait, checking for comments. (If comments do not show up, access them here)
Your Lists
Public Lists
List Contents
List Validation Report: Failed
Elements not found:
Optional: Add Missing Accessions to A List
Mismatched case
Click the Adjust Case button to align the case in the list with what is in the database.
Multiple mismatched case
Items listed here have mulitple case mismatches and must be fixed manually. If accessions need to be merged, contact the database directly.
List elements matching a synonym
Multiple synonym matches
Fuzzy Search Results
Synonym Search Results
Available Seedlots
Your Datasets
Public Datasets
Dataset Contents
Dataset Validation Failed
Elements not found:
Your Calendar
Having trouble viewing events on the calendar?
Are you associated with the breeding program you are interested in viewing?
Add New Event
Event Info
Attribute | Value |
---|---|
Project Name: | |
Start Date: | |
End Date: | |
Event Type: | |
Event Description: | |
Event Web URL: |
Edit Event
Login
Forgot Username
If you've forgotten your username, enter your email address below. An email will be sent with any account username(s) associated with your email address.
Reset Password
To reset your password, please enter your email address. A link will be sent to that address with a link that will enable you to reset your password.
Create New User
Working
